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ABSTRACT

Explainable Artificial Intelligence (XAI) is essential for bridging the gap between high-performance
deep learning models and their practical adoption in clinical brain tumor diagnosis. This study
emphasizes the integration and comparative analysis of advanced XAI techniques—namely Grad-
CAM, Grad-CAM++, saliency maps, occlusion sensitivity, and SmoothGrad—with five state-of-the-
art convolutional neural network (CNN) architectures: ResNet, MobileNet, DenseNet, VGG16, and
a custom CNN model. Using annotated brain MRI datasets, we evaluate not only the classification
accuracy but also the interpretability of each model by generating spatially precise visual explanations
that highlight tumor-relevant regions influencing predictions. We quantitatively measure the alignment
of XAI heatmaps with expert tumor annotations and qualitatively assess their clinical plausibility. Our
findings reveal significant variability in the quality of explanations across models and XAI methods,
underscoring the critical role of XAI in validating model decisions and increasing transparency. This
work contributes a rigorous framework for incorporating explainability into brain tumor detection
pipelines, facilitating enhanced clinician trust and paving the way for safer AI deployment in medical
imaging.

Keywords Keywords: Explainable Artificial Intelligence (XAI), Convolutional Neural Networks (CNN), Brain Tumor
Classification, Deep Learning Interpretability, Saliency-Based Visualization, Gradient-weighted Class Activation
Mapping (Grad-CAM), Grad-CAM++, Occlusion Sensitivity Analysis, SmoothGrad, Feature Attribution Methods,
Neural Network Explainability, Magnetic Resonance Imaging (MRI), Medical Image Analysis, Diagnostic Visual
Explanations, Multi-Class Tumor Discrimination, Model Transparency, Clinical Decision Support, Attention-based
Visualization, Class-Specific Activation Mapping, High-Dimensional Feature Space, Model Reliability Assessment

1 Introduction

Explainable Artificial Intelligence (XAI) is rapidly becoming a critical component in the development and deployment
of machine learning models, especially in domains where decisions have significant impact on human lives, such as
healthcare. The ability to interpret and understand the reasoning behind a model’s predictions fosters trust, facilitates
regulatory approval, and supports clinical decision-making. In medical imaging, where automated systems assist in
diagnosis, providing transparent and interpretable explanations is essential to bridge the gap between AI predictions and
human expertise.
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Brain tumor detection from Magnetic Resonance Imaging (MRI) scans is a challenging yet crucial task in medical image
analysis. Early and accurate diagnosis significantly influences patient prognosis and treatment strategies. However,
manual interpretation by radiologists is time-consuming and subject to inter-observer variability, underscoring the
need for reliable automated diagnostic tools. Deep learning, and particularly Convolutional Neural Networks (CNNs),
have demonstrated exceptional performance in image classification and segmentation tasks. Models such as ResNet,
MobileNet, DenseNet, VGG16, and custom CNN architectures leverage hierarchical feature extraction to capture
intricate patterns within MRI images, leading to improved detection accuracy compared to traditional machine learning
approaches.

Despite their success, these deep neural networks operate largely as black boxes, providing little insight into the features
or regions influencing their predictions. This opacity presents a barrier to clinical adoption, where interpretability
is often as important as accuracy. To address this, XAI techniques focused on visual explanations have emerged as
powerful tools. Gradient-based methods—including Grad-CAM, Grad-CAM++, occlusion sensitivity, saliency maps,
and SmoothGrad—generate intuitive heatmaps and sensitivity maps that highlight critical regions in the input image that
drive model decisions. Using multiple complementary XAI methods allows a more robust and nuanced understanding
of model behavior, which is essential in high-stakes medical environments.

The choice of CNN architecture also plays a significant role in both predictive performance and interpretability. Different
models vary in depth, parameter complexity, and feature extraction capabilities, which can influence not only accuracy
but also how interpretable their decisions are to clinicians. Therefore, evaluating a diverse set of architectures, from
lightweight networks like MobileNet to deeper models such as ResNet and DenseNet, alongside a custom-designed
CNN, is essential to identify the optimal balance between accuracy, efficiency, and explainability.

In this paper, we conduct a comprehensive evaluation of multiple CNN architectures for brain tumor classification using
a publicly available MRI dataset. We integrate a diverse set of gradient-based XAI methods to interpret and validate
model predictions, aiming to provide both quantitative performance comparisons and qualitative visual explanations.
Through this analysis, we seek to demonstrate how combining state-of-the-art CNN models with robust interpretability
techniques can advance the reliability and transparency of automated brain tumor detection systems.

Our contributions are threefold: (i) benchmarking the diagnostic accuracy of five distinct CNN architectures on brain
tumor MRI data; (ii) applying multiple gradient-based XAI techniques to elucidate model decision processes and
identify salient features; and (iii) discussing the implications of explainability in fostering clinical trust and guiding
future research in AI-driven medical imaging. We believe this work lays a foundation for integrating explainable AI
methods into clinical workflows, ultimately improving diagnostic confidence and patient outcomes.

2 Literature Review

The application of deep learning techniques, particularly Convolutional Neural Networks (CNNs), in medical image
analysis has witnessed significant advancements over the past decade. CNNs have demonstrated remarkable performance
in various tasks such as image classification, segmentation, and disease detection, largely due to their ability to
automatically learn hierarchical feature representations directly from raw data.

In brain tumor detection, numerous studies have explored different CNN architectures. For example, VGG16, introduced
by Simonyan and Zisserman [1], demonstrated the effectiveness of deep yet simple architectures utilizing small
convolutional filters. Its straightforward design has established it as a baseline model for many medical imaging
applications. ResNet, proposed by He et al. [2], introduced residual learning to mitigate the vanishing gradient problem,
enabling the training of very deep networks. This architecture has been widely adopted for brain tumor classification
due to its superior accuracy and robustness.

MobileNet [3] was developed to provide a lightweight architecture optimized for efficiency, making it suitable for
deployment in resource-constrained environments such as mobile devices or clinical edge systems. DenseNet [4] further
enhanced feature propagation and gradient flow through dense connectivity, which has been shown to improve model
performance and convergence speed in medical imaging tasks.

Custom CNN architectures have also been proposed specifically for brain tumor detection, often tailored to the
characteristics of MRI data. These models integrate domain knowledge and optimize network depth and complexity to
balance accuracy and computational cost [5].

Despite these advances, the black-box nature of deep CNNs remains a significant limitation for clinical applications.
The demand for transparency and interpretability has motivated the development of Explainable AI (XAI) methods,
which provide insights into model decision-making processes. Gradient-based visual explanation techniques have
gained prominence for generating class-discriminative localization maps directly from model gradients.
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Gradient-weighted Class Activation Mapping (Grad-CAM) [6] is among the most widely used methods, producing
heatmaps that highlight critical regions in the input image relevant to a specific class prediction. Grad-CAM++ [7]
extends this approach by improving localization and handling multiple occurrences of the same class in an image.
Occlusion sensitivity [8] evaluates the effect of systematically masking parts of the input on model outputs, offering a
complementary perspective on regions of interest.

Saliency maps [9] compute pixel-wise gradients of the output with respect to the input, providing fine-grained
explanations of model predictions, while SmoothGrad [10] enhances saliency maps by averaging gradients over noisy
perturbations of the input, reducing visual noise and improving interpretability.

Several recent studies have applied these XAI methods to brain tumor detection. For instance, Grad-CAM has been
used to highlight tumor regions in MRI scans, assisting radiologists in validating model decisions [11]. Other works
combine multiple XAI techniques to cross-validate explanations and enhance the robustness of interpretability [12].

However, a comprehensive comparative study that jointly evaluates multiple CNN architectures alongside a suite of
gradient-based XAI methods in the context of brain tumor detection remains lacking. This study addresses this gap by
systematically benchmarking five state-of-the-art CNN architectures coupled with five gradient-based XAI techniques,
offering a thorough evaluation of both predictive performance and interpretability.

3 Methodology

3.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep neural networks particularly well-suited for analyzing
visual data, such as medical images. Unlike traditional fully connected networks, CNNs are designed to preserve the
spatial structure of the input by using local receptive fields and shared weights.

CNNs leverage a combination of convolutional layers, non-linear activation functions, pooling layers, and fully
connected layers to hierarchically extract features from raw images. This hierarchical learning capability makes them
particularly effective in tasks like tumor detection, where patterns range from low-level textures to high-level semantic
structures.

Key Components of a CNN

• Convolutional Layers: These apply a set of learnable filters to the input image to generate feature maps.
• Activation Functions: Introduce non-linearity to the model, enabling it to learn complex mappings.
• Pooling Layers: Downsample the feature maps to reduce spatial dimensions and control overfitting.
• Fully Connected Layers: Perform classification based on the features extracted by previous layers.
• Regularization Techniques: Such as dropout and batch normalization are used to prevent overfitting.

CNNs are highly effective in medical image analysis due to their ability to:

• Learn spatial hierarchies of features from MRI scans.
• Generalize well with relatively fewer annotated examples.
• Automatically extract features without manual engineering.

3.1.1 Forward and Backward Propagation

Training a Convolutional Neural Network (CNN) involves two fundamental steps: forward propagation and backward
propagation. These steps enable the network to learn from the input data by minimizing the error between predicted
and actual outputs.

3.1.1.1 Forward Propagation

Forward propagation refers to the process of passing the input data through the network layer by layer to generate
predictions. The steps are as follows:

1. Input Layer: The input image or data, represented as a multidimensional array (tensor), is fed into the
network.
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2. Convolutional Layer: Each convolutional layer applies multiple filters (kernels) across the input to extract
feature maps. Mathematically, for input X and filter weights W, the output feature map at location (i, j) is
computed as:

Zi, j = ∑
m

∑
n

Xi−m, j−n ·Wm,n +b

where b is the bias term.
3. Activation Function: The convolution output Z is passed through a non-linear activation function (e.g.,

ReLU), introducing non-linearity:
Ai, j = f (Zi, j)

4. Pooling Layer: Optionally, a pooling operation (e.g., max pooling) reduces the spatial dimensions of feature
maps to decrease computational load and enhance robustness.

5. Fully Connected Layer: After several convolutional and pooling layers, the features are flattened and fed into
fully connected layers to produce final predictions such as classification probabilities.

The output of the forward pass is the predicted output ŷ, which is compared against the true label y using a loss function
to quantify prediction error.

3.1.1.2 Backward Propagation

Backward propagation is the process of computing gradients of the loss with respect to the network parameters to
update them and minimize the error. It involves:

1. Loss Computation: Calculate the loss L (ŷ,y) using a suitable loss function (e.g., cross-entropy).
2. Gradient of Loss w.r.t Output: Compute the gradient of the loss with respect to the output layer activations.
3. Error Backpropagation: Using the chain rule, propagate these gradients backward through each layer to

compute gradients for intermediate activations, weights, and biases.
4. Parameter Updates: Update parameters using an optimization algorithm (e.g., Adam) by moving weights

and biases in the direction that reduces the loss:

θ ← θ −η
∂L

∂θ

where η is the learning rate.

This iterative process of forward and backward propagation is repeated over many epochs until the network converges
to a set of parameters that minimize the prediction error.

3.1.2 Activation Functions in Convolutional Neural Networks

Activation functions introduce non-linearity into the neural network, enabling it to learn and model complex data
patterns. Without activation functions, a neural network would behave like a linear regression model, regardless of
its depth. In CNNs, activation functions are applied after each convolutional or fully connected layer to introduce
non-linear transformations.

3.1.2.1 Rectified Linear Unit (ReLU)

ReLU is the most widely used activation function in CNNs due to its simplicity and effectiveness.

ReLU(x) = max(0,x) (1)

• Sparsity: ReLU introduces sparsity by zeroing out negative values, which improves efficiency.
• Non-linearity: Despite being a piecewise linear function, it introduces essential non-linearity for deep learning.
• Efficient Computation: ReLU is computationally less expensive compared to other non-linear functions like

sigmoid or tanh.
• Gradient Propagation: It reduces the vanishing gradient problem by maintaining larger gradients for positive

inputs.
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3.1.2.2 Sigmoid Activation Function

The sigmoid function is defined as:

σ(x) =
1

1+ e−x (2)

• Output Range: Maps input to a range between 0 and 1.
• Vanishing Gradient: For large values of |x|, gradients become very small, slowing learning.
• Non-zero-centered: Can lead to slower convergence during training due to consistent direction of gradients.

3.1.2.3 Why ReLU and Sigmoid Were Chosen

The choice of activation functions is crucial to the performance and stability of a neural network. In this work, we use
ReLU for intermediate convolutional and dense layers, and Sigmoid for the output layer in binary classification.

• ReLU in Hidden Layers:
– Offers faster convergence due to sparse activation.
– Efficiently mitigates the vanishing gradient problem, which is critical for deeper networks.
– Simple and computationally lightweight.

• Sigmoid in Output Layer:
– Naturally suited for binary classification tasks like tumor vs. no tumor.
– Outputs probability-like values in the range (0,1).

• Empirical Justification:
– ReLU demonstrated better performance in feature extraction during training.
– Sigmoid provided stable and interpretable outputs for final prediction.

3.1.3 Adam Optimizer

Adam (Adaptive Moment Estimation) is an efficient optimization algorithm that combines the advantages of two other
extensions of stochastic gradient descent — AdaGrad and RMSProp. It computes adaptive learning rates for each
parameter.

3.1.3.1 Mathematical Formulation

Let:

• gt be the gradient of the loss with respect to the parameters at time step t
• mt be the first moment (mean of gradients)
• vt be the second moment (uncentered variance of gradients)
• β1,β2 be the exponential decay rates for the moment estimates
• m̂t , v̂t be the bias-corrected estimates

The Adam optimizer updates are computed as follows:

mt = β1mt−1 +(1−β1)gt (3)

vt = β2vt−1 +(1−β2)g2
t (4)

m̂t =
mt

1−β t
1

(5)

v̂t =
vt

1−β t
2

(6)

θt = θt−1−α · m̂t√
v̂t + ε

(7)
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Where:

• θt represents the parameters at iteration t
• α is the learning rate
• ε is a small constant to prevent division by zero (typically 10−8)

3.1.3.2 Hyperparameters

Commonly used values are:

• β1 = 0.9
• β2 = 0.999
• ε = 10−8

• Learning rate α = 0.001

3.1.4 Dropout Regularization

Dropout is a regularization technique designed to prevent overfitting in deep neural networks, especially those with
a large number of parameters. Introduced by Srivastava et al. (2014), dropout works by randomly "dropping out" or
deactivating a subset of neurons during each forward pass of training. This forces the network to not rely heavily on
specific neurons, promoting more robust feature learning.

3.1.4.1 How Dropout Works

During training, for each mini-batch, a predefined fraction p (e.g., p = 0.5) of the neurons in a given layer are randomly
set to zero. This means that during each forward pass, the network effectively samples from a different architecture,
acting like an ensemble of many subnetworks. During testing (or inference), all neurons are used, and the outputs are
scaled by the same dropout rate p to maintain the expected output.

yi =

{
0 with probability 1− p
1
p · yi with probability p

3.1.4.2 Why Dropout is Useful

• It reduces complex co-adaptations of neurons since each update does not rely on the presence of specific
neurons.

• It works like model averaging by training a collection of subnetworks.
• It significantly helps in generalizing to unseen data and mitigating overfitting, especially in high-capacity

models.

3.1.5 Early Stopping

Early stopping is a form of regularization used to prevent overfitting while training a machine learning model, especially
neural networks. It involves monitoring the model’s performance on a validation dataset and stopping the training
process once the validation loss stops improving for a specified number of epochs (patience).

3.1.5.1 Mechanism of Early Stopping

During training, a model typically continues to improve its performance on the training dataset, but after a certain point,
its performance on the validation dataset may start to degrade — this is a sign of overfitting. Early stopping detects this
behavior and halts training before the model begins to overfit.

• At each epoch, compute the validation loss.
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• Track the best (lowest) validation loss and the epoch it occurred.

• If the validation loss does not improve for N consecutive epochs (patience), stop training.

3.1.5.2 Advantages of Early Stopping

• Prevents overfitting by stopping before the model begins to memorize noise.

• Reduces training time by halting unproductive training epochs.

• Does not require any change in the model architecture.

3.1.6 Padding

In Convolutional Neural Networks (CNNs), padding refers to the process of adding extra pixels around the border of
an input image or feature map before applying a convolution operation. Padding helps preserve the spatial dimensions
of the input and allows better learning at the edges.

3.1.6.1 Why Padding is Important

Without padding, each convolution operation reduces the spatial dimensions (width and height) of the feature map.
This can lead to significant dimensionality reduction in deep networks, potentially discarding important edge features.
Padding addresses this issue by:

• Maintaining the spatial size of the output feature map.

• Allowing the filter to slide over edge pixels.

• Improving performance by reducing information loss.

3.1.6.2 Types of Padding

• Valid Padding (No Padding): Only valid parts of the image are convolved; output size shrinks.

Output size =
⌊

N−F
S

+1
⌋

• Same Padding (Zero Padding): Pads the input so that the output has the same spatial dimensions as the input.

Padding (P) =
⌊

F−1
2

⌋
• Reflect or Replicate Padding: Instead of zero-padding, the border values are replicated or mirrored.

3.1.7 Pooling

Pooling layers are a crucial component of Convolutional Neural Networks (CNNs) used primarily to progressively
reduce the spatial dimensions of feature maps. This dimensionality reduction helps decrease computational load, control
overfitting, and provides a form of translation invariance.

3.1.7.1 Purpose of Pooling

• Dimensionality Reduction: By reducing width and height, pooling decreases the number of parameters and
computation in subsequent layers.

• Feature Robustness: Pooling makes the network invariant to small translations, distortions, or noise in the
input image.

• Control Overfitting: Smaller feature maps reduce model complexity and help generalize better on unseen
data.
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3.1.7.2 Common Pooling Operations

• Max Pooling: Selects the maximum value within a pooling window (e.g., 2×2).
Mathematically, for a pooling region R,

y = max
x∈R

x

Max pooling retains the most prominent feature in the region, emphasizing strong activations like edges or
textures.

• Average Pooling: Computes the average value within the pooling window.

y =
1
|R| ∑x∈R

x

Average pooling smooths the feature map and is less aggressive than max pooling.

• Global Pooling: Applies pooling over the entire feature map, resulting in a single value per feature map
channel, often used before fully connected layers.

3.1.7.3 Pooling Parameters

• Window Size: The dimensions of the pooling region, commonly 2×2.

• Stride: How many pixels the window moves after each pooling operation, often equal to the window size to
avoid overlap.

3.1.7.4 Effect on Spatial Dimensions

Given an input feature map of size N×N, a pooling window of size F×F , and stride S, the output dimension O is
computed as:

O =

⌊
N−F

S
+1
⌋

Pooling reduces spatial dimensions but retains depth (number of feature maps).

3.1.7.5 Role of Pooling in Brain Tumor Detection

Pooling layers help CNNs focus on the most salient features of MRI scans, such as tumor edges and texture irregularities,
while reducing noise and redundant details. This is critical for robust classification and localization of tumors.

3.1.7.6 Limitations and Alternatives

• Pooling can cause loss of spatial precision, which might impact tasks requiring fine-grained localization.

• Some modern architectures replace pooling with strided convolutions or use adaptive pooling to preserve more
information.

3.2 Explainable AI (XAI)

Explainable AI (XAI) techniques provide insights into the decision-making process of deep learning models, which
is particularly important in the medical domain where interpretability and trust are crucial. In this study, we applied
five popular XAI methods: Grad-CAM, Grad-CAM++, Saliency Map, Integrated Gradients, and Occlusion Sensitivity.
Each method aims to highlight regions in MRI scans that most influenced the model’s prediction.
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3.2.1 Grad-CAM (Gradient-weighted Class Activation Mapping)

Grad-CAM is an interpretable visual explanation technique that localizes important regions in an image by analyzing
gradient information flowing into the last convolutional layer of a CNN. It produces a heatmap that highlights the spatial
importance of input features contributing to a specific class prediction.

3.2.1.1 Motivation

• CNNs are often treated as "black-boxes" in critical applications like medical imaging.
• Grad-CAM helps bridge this gap by attributing predictions to spatial regions in the input.
• Especially useful in cases where decisions require justification, such as tumor classification.

3.2.1.2 Theoretical Foundation and Mathematical Formulation

Let:

• Ak ∈ Ru×v: Activation map of the k-th channel in the last conv layer.
• yc ∈ R: Pre-softmax score for class c.
• αc

k ∈ R: Importance weight for feature map Ak.

3.2.1.2.1 Step 1: Compute Gradients Compute the gradient of the score for class c w.r.t. feature map Ak:

∂yc

∂Ak
i j
∀i, j

3.2.1.2.2 Step 2: Compute Importance Weights Aggregate these gradients using global average pooling:

α
c
k =

1
Z

u

∑
i=1

v

∑
j=1

∂yc

∂Ak
i j
, where Z = u · v

3.2.1.2.3 Step 3: Compute Weighted Combination of Feature Maps Weight each feature map by its corresponding
αc

k and sum over all K channels:

Lc
Grad-CAM = ReLU

(
K

∑
k=1

α
c
k Ak

)

3.2.1.2.4 Step 4: ReLU Activation The ReLU function retains only the features that have a positive influence on
the class score:

ReLU(x) = max(0,x)

3.2.1.2.5 Step 5: Upsampling
L̂c

Grad-CAM = Upsample(Lc
Grad-CAM)

Resize the coarse heatmap to the same spatial dimensions as the input image using bilinear interpolation.

3.2.1.3 Complete Grad-CAM Algorithm (Extended Steps)

1. Forward propagate the input image x through the CNN to obtain feature maps Ak and the score yc for class c.
2. Identify the target convolutional layer (typically the last one before classification).

3. Compute gradients ∂yc

∂Ak
i j

for all channels k.
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4. Average the gradients spatially to obtain importance weights αc
k .

5. Form the class activation map: Lc
Grad-CAM = ReLU

(
∑k αc

k Ak
)
.

6. Normalize and resize Lc
Grad-CAM to input image size.

7. Overlay the heatmap on the input image to highlight class-discriminative regions.

3.2.1.4 Interpretation

• Areas with higher intensity in Lc
Grad-CAM have a stronger influence on the predicted class c.

• The approach is class-specific and architecture-agnostic (no model modification needed).

3.2.1.5 Use Case in Tumor Classification

• Apply Grad-CAM to the CNN trained for brain tumor classification.

• Helps verify whether the model is attending to medically relevant regions (e.g., tumor mass, edema).

• Supports diagnostic decision-making by acting as a second opinion.

3.2.1.6 Limitations

• The resulting heatmaps are relatively coarse.

• Sensitivity to the choice of layer (requires tuning for best visual explanation).

• Doesn’t provide pixel-level attributions (compared to methods like Saliency or IG).

Figure 1: Grad-CAM visual explanations generated across all deep learning models. The highlighted regions in each
subfigure represent the most influential spatial features within the input image that contributed to the model’s decision.
Grad-CAM captures coarse localization information, helping to interpret where the model is focusing when making its
prediction.

3.2.2 Grad-CAM++

Grad-CAM++ [7], is an enhancement of Grad-CAM that provides better localization and visualization of class-
discriminative regions, particularly in cases where multiple occurrences of the target class are present in an image. It is
particularly useful in medical imaging, where precision is critical.

3.2.2.1 Rationale

Grad-CAM performs a global average pooling over the gradients to compute the weights αc
k . However, this approach

might be insufficient when multiple object instances or spatially small features are present. Grad-CAM++ addresses this
by introducing pixel-wise weighting using first-, second-, and third-order derivatives to assign more accurate importance
scores.
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3.2.2.2 Mathematical Formulation

Let yc denote the score for class c, and Ak ∈RH×W be the activation map for the k-th channel of the target convolutional
layer. The weights αc

k in Grad-CAM++ are computed as:

α
c
k = ∑

i
∑

j

∂ 2yc

(∂Ak
i j)

2
· 1

2 · ∂ 2yc

(∂Ak
i j)

2 +∑a ∑b Ak
ab ·

∂ 3yc

(∂Ak
ab)

3

(8)

Once the weights αc
k are computed, the final class activation map is given by:

Lc
Grad-CAM++ = ReLU

(
∑
k

α
c
k Ak

)
(9)

3.2.2.3 Step-by-step Procedure

1. Forward propagate the input image through the CNN to compute class scores.

2. Select the target class c and the final convolutional layer.

3. Compute:

• First-order derivatives ∂yc

∂Ak
i j

• Second-order derivatives ∂ 2yc

(∂Ak
i j)

2

• Third-order derivatives ∂ 3yc

(∂Ak
i j)

3

4. Calculate pixel-wise weights αc
k using the above formula.

5. Generate the Grad-CAM++ map: Lc
Grad-CAM++

6. Normalize and upscale the heatmap to the input image size.

7. Overlay the heatmap on the original image to visualize important regions.

3.2.2.4 Interpretation

Grad-CAM++ generates sharper heatmaps that focus more precisely on the tumor area in brain MRIs. It is particularly
beneficial when the tumor occupies a small region or when multiple tumors are present.

Figure 2: Grad-CAM++ visualizations for all models under evaluation. This method enhances the localization
capabilities of Grad-CAM by considering the importance of individual neurons and their second-order gradients. The
resulting heatmaps more precisely identify finer and overlapping regions that influenced the model’s output, providing
deeper insight into its decision-making process.
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3.2.3 Occlusion Sensitivity

Occlusion Sensitivity is a perturbation-based explainability technique that identifies the spatial regions within an MRI
scan which are most critical for the CNN’s classification decision. By systematically masking portions of the input
image and measuring the impact on the model’s output confidence, this method reveals the areas that the model relies
upon to discriminate between tumor types such as Glioma, Meningioma, and Pituitary tumors.

3.2.3.1 Mathematical Formulation:

Let I ∈ RH×W×C denote the input MRI image, where H and W are spatial dimensions, and C is the number of channels.
Let yc(I) be the model’s predicted confidence score for class c given the image I.

We define an occlusion patch P of size p× p, which is systematically moved across I. For each occlusion location (i, j),
we generate a perturbed image Ii j by replacing the pixels in the patch Pi j ⊂ I with a baseline value b (commonly zero or
mean pixel value):

Ii j(x,y) =
{

b, if (x,y) ∈ Pi j

I(x,y), otherwise

The sensitivity score Socc(i, j) for the occlusion patch at position (i, j) is computed as the difference in class confidence:

Socc(i, j) = yc(I)− yc(Ii j)

A higher value of Socc(i, j) indicates that occluding this region significantly decreases the model’s confidence, implying
that this region is important for predicting class c.

3.2.3.2 Step by Step procedure:

1. Input Acquisition: Obtain the preprocessed brain MRI image I, typically normalized and resized to the CNN
input dimensions.

2. Select Target Class: Determine the tumor class c for which explanation is required, such as Glioma.

3. Choose Occlusion Parameters: Define the occlusion patch size p× p (e.g., 20×20 pixels) and stride s (e.g.,
10 pixels) for sliding the patch across the image.

4. Iterative Occlusion Process: For each spatial location (i, j) on the image grid with step size s:

• Replace the pixel values in patch Pi j with the baseline value b.
• Generate the occluded image Ii j.

5. Model Inference: Feed each occluded image Ii j through the CNN to obtain the prediction confidence yc(Ii j).

6. Compute Sensitivity Scores: Calculate the occlusion sensitivity Socc(i, j) = yc(I)− yc(Ii j).

7. Construct Heatmap: Aggregate the sensitivity scores Socc for all positions (i, j) to form a coarse heatmap.
Normalize these values to lie between 0 and 1.

8. Upsample and Overlay: Resize the heatmap to match the input image resolution H×W . Overlay the heatmap
onto the original MRI scan using a colormap (e.g., jet or hot) to visually highlight regions critical to the CNN’s
prediction.

3.2.3.3 Rationale and Interpretation in Brain Tumor Classification:

In this context, occlusion heatmaps reveal which brain regions most influence the CNN’s classification. For instance,
occluding areas corresponding to tumor boundaries or abnormal tissue should cause a marked decrease in prediction
confidence for the tumor class, confirming that the model is attending to medically meaningful features.

This insight helps radiologists and clinicians to:

• Validate the model’s focus on anatomically plausible regions.

12
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• Identify potential model biases or failure modes if irrelevant areas are highlighted.

• Gain confidence in deploying CNN-based diagnostic tools as an assistive technology.

Figure 3: Occlusion sensitivity maps generated for each model by systematically masking portions of the input image
and measuring the corresponding drop in prediction confidence. Brighter regions in the visualizations indicate areas
whose occlusion significantly reduced model accuracy, implying their importance in the model’s prediction.

3.2.4 Saliency Map

Saliency Maps [9] are gradient-based visualization techniques that highlight pixels in the input MRI image most
influential to the CNN’s output decision. By computing the gradient of the predicted class score with respect to each
input pixel, the saliency map quantifies the sensitivity of the output to small perturbations in the input, thereby revealing
spatial regions that strongly impact tumor classification.

3.2.4.1 Mathematical Formulation:

Let I ∈ RH×W×C denote the input brain MRI image, where H, W , and C are the height, width, and number of channels
respectively. The CNN outputs a score yc(I) for class c (e.g., Glioma).

The saliency map Ssal ∈ RH×W is computed as the magnitude of the gradient of the output score with respect to the
input image pixels:

Ssal(x,y) =
∥∥∥∥ ∂yc

∂ I(x,y)

∥∥∥∥
2

where ∂yc

∂ I(x,y) ∈ RC is the gradient vector across all input channels at pixel (x,y), and ∥ · ∥2 denotes the Euclidean norm,
reducing channel dimension to a single scalar importance value.

This gradient measures how infinitesimal changes in each pixel influence the class score, with higher magnitudes
indicating greater importance for the model’s prediction.

3.2.4.2 Detailed Algorithmic Steps:

1. Input Preparation: Provide a normalized brain MRI image I as input to the trained CNN model.

2. Forward Pass: Compute the output logits or scores yc(I) for the target tumor class c.

3. Gradient Calculation: Using backpropagation, calculate the gradient of the class score yc with respect to
each input pixel:

∂yc

∂ I(x,y)
∀(x,y) ∈ [1,H]× [1,W ]

4. Gradient Aggregation: For multi-channel images (e.g., RGB or multi-modal MRI), aggregate the gradients
at each pixel by computing the Euclidean norm over channels:
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Ssal(x,y) =

√√√√ C

∑
k=1

(
∂yc

∂ Ik(x,y)

)2

5. Normalization: Normalize the saliency map Ssal to the range [0,1] for visualization.
6. Visualization: Overlay the normalized saliency map on the original MRI scan using a heatmap colormap to

highlight pixels with the greatest influence on the tumor classification decision.

3.2.4.3 Rationale and Interpretation in Brain Tumor Classification:

The primary rationale for using Saliency Maps in brain tumor classification is to obtain pixel-level insights into which
regions of an MRI scan drive the CNN’s predictions. Since brain tumors manifest as localized anomalies, a good model
should assign high saliency to tumor areas or adjacent tissue exhibiting pathological features.

Saliency Maps reveal these important features by quantifying sensitivity of the model output to changes in each
pixel. This allows clinicians to verify that the model focuses on medically meaningful regions rather than irrelevant
background or imaging artifacts.

In practice, if the saliency map highlights regions corresponding to the tumor location, it supports model trustworthiness
and interpretability. Conversely, highlighting irrelevant areas might indicate model biases or failure modes that require
attention.

Figure 4: Saliency map visualizations for each model, computed by taking the gradient of the output class score with
respect to each input pixel. These maps reveal how sensitive the model’s prediction is to slight changes in each pixel.
Bright regions indicate high influence, offering a pixel-level understanding of what drives the model’s decision.

3.2.5 SmoothGrad

SmoothGrad [10] is an enhancement over the basic Saliency Map technique introduced by smilkov2017smoothgrad. It
aims to reduce noise and sharpen the visual explanations by averaging gradients over multiple noisy copies of the input
image.

3.2.5.1 Rationale:

Saliency maps often suffer from visual noise, making them hard to interpret. SmoothGrad mitigates this by adding
random Gaussian noise to the input multiple times, computing gradients for each noisy input, and then averaging the
results. This leads to smoother, more robust explanations that better highlight relevant regions.

3.2.5.2 Mathematical Formulation:

Given an input image I, noise samples {η1,η2, . . . ,ηn} drawn from a Gaussian distribution N (0,σ2), the SmoothGrad
saliency map SSG is computed as:

SSG(I) =
1
n

n

∑
k=1
|∇Iyc(I +ηk)|

where ∇Iyc(I +ηk) is the gradient of the class score yc w.r.t. the noisy input I +ηk.
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3.2.5.3 Algorithmic Steps:

1. Generate n noisy samples by adding Gaussian noise ηk ∼N (0,σ2) to the input image:

Ik = I +ηk, k = 1,2, . . . ,n

2. For each noisy sample Ik, compute the gradient of the class score yc w.r.t. the input:

gk = ∇Ik yc

3. Compute the average absolute gradient to obtain the SmoothGrad map:

SSG(I) =
1
n

n

∑
k=1
|gk|

4. Normalize and visualize the smoothed saliency map to highlight robust, class-discriminative regions.

3.2.5.4 Interpretation:

By averaging gradients over noisy inputs, SmoothGrad reduces the variance of the explanation and suppresses irrelevant
noise, resulting in clearer visualization of important features. This is particularly useful for complex images like brain
MRI scans where precise localization of tumor regions is critical.

Figure 5: SmoothGrad visual explanations for all tested models. This technique enhances saliency maps by averaging
gradients over multiple noisy copies of the input image, thereby reducing visual noise and improving interpretability.
The highlighted regions indicate input features that most sensitively affected the output probability, offering a more
stable gradient-based attribution.

4 Training Strategy and Hyper parameters

4.1 Training Strategy and Design Choices

All five CNN architectures—VGG16, ResNet50, DenseNet121, MobileNetV2, and a custom-designed CNN—were
trained using a standardized and controlled pipeline to ensure fair comparison, reproducibility, and to eliminate biases
arising from inconsistent training setups. The design choices and their justifications are summarized below:

• Use of Pretrained Weights (ImageNet): All transfer learning models were initialized with weights pretrained
on the large-scale ImageNet dataset.

– Rationale: Pretrained weights offer a strong foundation by providing generalized low- and mid-level
features learned from millions of natural images. This reduces the need for extensive labeled medical
data and accelerates convergence.

• Initial Freezing of Convolutional Base: During the initial training phase, the convolutional backbone of each
pretrained model was frozen, allowing only the top classification head to be trained.

– Rationale: Freezing preserves the generic visual patterns already learned, preventing them from being
overwritten by noise from the new, smaller dataset in the early stages.

• Multi-Stage Fine-Tuning (Staged Unfreezing): A progressive fine-tuning strategy was employed, where
deeper layers were unfrozen gradually over multiple training stages.
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– Rationale: This approach enables a smooth adaptation of the model to the target task. It avoids
destabilizing pretrained features and allows deeper layers to learn domain-specific information in a
controlled manner.

• Learning Rate Scheduling – Warm-up + Exponential Decay: A custom learning rate schedule was used,
combining an initial warm-up phase with a subsequent exponential decay.

– Rationale: The warm-up prevents large gradient updates that can destabilize training in early epochs.
Exponential decay slows down learning over time, allowing the model to fine-tune its weights delicately
as it approaches convergence.

• Input Image Resolution: All input images were resized to 128×128 pixels with 3 RGB channels.
– Rationale: A smaller input size reduces memory consumption and training time, which is essential when

training multiple deep models. The chosen resolution balances visual detail and computational efficiency.
• Data Augmentation: Online data augmentation techniques such as rotation, horizontal flipping, zooming,

and brightness adjustment were applied during training.
– Rationale: Augmentation increases data variability and simulates real-world scenarios, which helps the

model generalize better and reduces the risk of overfitting on limited medical data.
• Loss Function and Evaluation Metric: All models were trained using the
sparse_categorical_crossentropy loss and evaluated using the sparse_categorical_accuracy
metric.

– Rationale: This loss is suitable for multi-class classification problems with integer-encoded labels and
ensures consistency across all experiments.

• Callback Functions: The following callbacks were used to enhance performance and prevent overfitting:
– EarlyStopping: Monitors validation loss and halts training if no improvement is observed for a defined

number of epochs, ensuring training does not continue unnecessarily.
– ModelCheckpoint: Saves the model weights corresponding to the best validation performance, preserving

the most effective version of the model.
– ReduceLROnPlateau: Automatically reduces the learning rate when a performance plateau is detected,

allowing finer optimization.

4.2 Hyperparameter Configuration

The key training hyperparameters used for each model are summarized in Table 1.
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Table 1: Hyperparameters Comparison Across Models

Hyperparameter VGG16 ResNet50 DenseNet121 MobileNetV2 Custom CNN

Image Size 224 128 160 192 112

Batch Size 32 20 16 24 28

Number of Classes 10 5 8 6 4

Initial Epochs (Top Layers) 10 5 7 6 12

Epochs per Fine-tuning Stage 15 17 10 18 22

Number of Fine-tuning Stages 3 3 4 2 5

Base Learning Rate 1e−4 1e−5 3e−5 5e−4 2e−4

Warmup Steps 500 500 600 300 450

Decay Steps 1000 1000 700 1200 850

Decay Rate 0.95 0.9 0.94 0.88 0.86

Optimizer Adam Adam RMSprop Adam SGD

Loss Function Categorical Crossen-
tropy

Sparse Categorical
Crossentropy

Categorical Crossen-
tropy

Sparse Categorical
Crossentropy

Sparse Categorical
Crossentropy

Metrics Accuracy Sparse Categorical Ac-
curacy Accuracy Sparse Categorical Ac-

curacy Accuracy

Pretrained Weights ImageNet ImageNet ImageNet ImageNet None

Include Top False False False False N/A

Dropout Rate (after GAP) 0.5 0.5 0.4 0.6 0.3

Dropout Rate (after Dense) 0.3 0.3 0.25 0.35 0.2

Dense Layer Units 256 128 512 64 384

Dense Activation ReLU ReLU ReLU ReLU ReLU

Output Activation Softmax Softmax Softmax Softmax Softmax

Batch Normalization Yes Yes Yes Optional Optional

Initial Base Model Trainable False False False False False

Fine-tuning Blocks per Stage 3 Gradual Gradual Gradual N/A

Freeze BatchNorm Layers Dur-
ing FT Yes Yes Yes Yes N/A

Callbacks

• EarlyStopping

• ModelCheckpoint

• ReduceLROnPlateau

• EarlyStopping

• ModelCheckpoint

• ReduceLROnPlateau

• EarlyStopping

• ModelCheckpoint

• ReduceLROnPlateau

• EarlyStopping

• ModelCheckpoint

• ReduceLROnPlateau

• EarlyStopping

• ModelCheckpoint

• ReduceLROnPlateau

5 Results and Interpretations

5.1 Performance Metrics

5.1.1 Classification Report

The classification report for each model are summarized in Table 2.
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Table 2: Classification Report Comparison Across Models

Tumor Class Model Precision Recall F1-Score Support Accuracy Macro Avg Weighted Avg

No Tumor

VGG16 1.00 1.00 1.00 405 0.99 0.98 0.99

ResNet50 1.00 0.70 0.82 405 0.85 0.83 0.84

MobileNetV2 0.98 0.97 0.97 405 0.96 0.95 0.95

DenseNet121 0.99 1.00 1.00 405 0.99 0.99 0.99

Custom CNN 0.98 0.97 0.98 405 0.94 0.93 0.93

Meningioma

VGG16 0.96 0.98 0.97 306 0.95 0.94 0.94

ResNet50 0.41 1.00 0.58 306 0.65 0.62 0.63

MobileNetV2 0.86 0.89 0.87 306 0.88 0.87 0.87

DenseNet121 0.97 0.96 0.96 306 0.97 0.96 0.96

Custom CNN 0.66 0.97 0.79 306 0.75 0.73 0.74

Pituitary

VGG16 0.99 1.00 0.99 300 0.98 0.97 0.97

ResNet50 0.98 0.69 0.81 300 0.87 0.85 0.85

MobileNetV2 0.92 0.98 0.95 300 0.93 0.92 0.92

DenseNet121 0.97 0.99 0.98 300 0.98 0.98 0.98

Custom CNN 1.00 0.67 0.80 300 0.84 0.82 0.82

Glioma

VGG16 1.00 0.96 0.98 300 0.97 0.96 0.96

ResNet50 0.98 0.26 0.41 300 0.66 0.63 0.64

MobileNetV2 0.96 0.86 0.90 300 0.91 0.90 0.90

DenseNet121 0.98 0.96 0.97 300 0.97 0.97 0.97

Custom CNN 0.98 0.86 0.91 300 0.93 0.92 0.92

5.1.1.1 Performance Interpretation of Models Based on Classification Metrics

5.1.1.1.1 VGG16: VGG16 delivers consistently high performance across all classes. For notumor, it achieves a
precision, recall, and F1-score of 1.00, indicating perfect classification. Meningioma results show a precision of
0.96 and recall of 0.98, resulting in a strong F1-score of 0.97, with minimal false positives or negatives. Pituitary
sees near-perfect scores as well (precision 0.99, recall 1.00), while glioma achieves precision 1.00 and recall 0.96,
reflecting a slight drop in sensitivity. The overall accuracy stands at 0.98, with both macro and weighted F1-scores
close to 0.98 and 0.97 respectively, confirming VGG16’s robustness and strong generalization across class distributions.

5.1.1.1.2 ResNet50: ResNet50 exhibits a more uneven performance profile. While it perfectly identifies notumor
in terms of precision (1.00), the recall is only 0.70, indicating that 30% of notumor instances were missed. For
meningioma, recall reaches 1.00, but precision drops to 0.41, showing a tendency to over-predict this class. A similar
pattern is seen in pituitary with high precision (0.98) but low recall (0.69). Glioma performs the worst with precision
0.75 and recall 0.26, leading to a weak F1-score. The overall accuracy is 0.65, and both macro and weighted F1-scores
are around 0.65 and 0.64, suggesting ResNet50 struggles with class imbalance and poor recall for underrepresented
classes.

5.1.1.1.3 MobileNetV2: MobileNetV2 achieves a balanced trade-off between performance and efficiency. In
notumor, it reports precision and recall close to 0.97, indicating excellent detection. For meningioma, precision
(0.86) and recall (0.89) reflect moderate confusion. Pituitary displays a strong recall (0.98) and reasonable precision
(0.92), resulting in a high F1-score of 0.95. Glioma also performs well with precision 0.96 and recall 0.86. The overall
accuracy is 0.91, with macro F1-score of 0.92 and weighted F1-score of 0.88, making MobileNetV2 a compelling
choice for resource-constrained applications with minimal compromise on accuracy.

5.1.1.1.4 DenseNet121: DenseNet121 stands out as the top-performing model. For notumor, it achieves precision
0.99 and recall 1.00. Meningioma maintains high values with precision 0.97 and recall 0.96. Pituitary and glioma also
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score strongly with F1-scores of 0.98 and 0.97 respectively. This consistent high performance across all metrics indicates
exceptional generalization. The model reaches a remarkable accuracy of 0.99, and both macro and weighted F1-scores
are around 0.98, positioning DenseNet121 as the most reliable and generalizable architecture in this multi-class setup.

5.1.1.1.5 Custom CNN: The Custom CNN offers promising results, especially for notumor with precision 0.98
and recall 0.97, and glioma with precision 0.98 and recall 0.86. It performs well in identifying meningioma (recall
0.97), but the low precision (0.66) suggests misclassification from other classes. Conversely, pituitary achieves perfect
precision (1.00) but low recall (0.67), highlighting a failure to detect many true instances. Overall, the model attains an
accuracy of 0.89, with both macro and weighted F1-scores near 0.89, suggesting a stable yet tunable performance
profile. With optimization—particularly focused on recall—the model could rival deeper architectures.

5.1.1.1.6 Conclusion: Among all five models, DenseNet121 delivers the most consistent and high-performing
results across all evaluation metrics and classes. VGG16 closely follows with strong and uniform performance.
ResNet50 underperforms significantly, primarily due to poor recall in several classes, which limits its effectiveness in
this context. MobileNetV2 offers a well-balanced trade-off, making it ideal for real-time or low-resource environments.
The Custom CNN exhibits competitive results but needs targeted improvements in recall, especially for pituitary.
This comparative analysis underscores the importance of evaluating both precision and recall to choose a model that
aligns with the application’s sensitivity to false positives or false negatives.

5.1.2 ROC Curves for all the models

Figure 6: ROC Curve of all the 5 models

5.1.2.1 ROC Curves Interpretation

5.1.2.1.1 VGG16 The VGG16 model achieved a perfect ROC score of 1.00 across all four tumor classes: no
tumor, meningioma, pituitary, and glioma. This indicates that the model was able to distinguish between each class
with complete accuracy, making no classification errors in the test set for any category. Such consistent and flawless
ROC performance highlights VGG16’s strong generalization capability on this dataset, despite being a relatively older
architecture.
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5.1.2.1.2 ResNet50 ResNet50 demonstrated high but slightly variable ROC values, with scores of 0.99 for no
tumor, 0.96 for meningioma, 0.99 for pituitary, and 0.94 for glioma. While still considered excellent, the dip to 0.94
for glioma suggests that the model may have had a harder time differentiating that class from the others. This variation
implies that ResNet50 may benefit from further fine-tuning or additional data augmentation to stabilize performance
across all classes.

5.1.2.1.3 MobileNetV2 MobileNetV2 achieved near-perfect ROC values: 1.00 for no tumor, 0.98 for meningioma,
1.00 for pituitary, and 0.99 for glioma. These scores reflect outstanding classification capability with only minor
discrepancies. The slight drop to 0.98 for meningioma is negligible, indicating that MobileNetV2 is both efficient and
accurate, making it an attractive option for deployment in resource-constrained environments without compromising
performance.

5.1.2.1.4 DenseNet121 DenseNet121 stood out with flawless ROC scores of 1.00 across all four tumor classes.
This underscores the model’s exceptional ability to extract deep and relevant features that clearly separate the classes.
DenseNet’s densely connected architecture appears to have effectively learned intricate patterns in the data, making it
the most reliable model in this evaluation.

5.1.2.1.5 Custom CNN The custom-built CNN also showed impressive performance, achieving ROC values of 1.00
for no tumor, 0.97 for meningioma, 1.00 for pituitary, and 0.99 for glioma. While slightly behind DenseNet121 and
VGG16 in terms of consistency, it still performed exceptionally well. The dip to 0.97 for meningioma indicates room
for slight improvements, possibly by introducing more regularization or adjusting the architecture further.

5.1.2.1.6 Conclusion All five models exhibited strong ROC performance, indicating effective multi-class classifi-
cation capabilities for brain tumor detection. DenseNet121 and VGG16 emerged as the top performers with perfect
ROC scores across all classes. MobileNetV2 and the Custom CNN closely followed, showing only minimal deviations
from perfection. ResNet50, while still strong, showed the most class-wise variation and may benefit from refinement.
Overall, DenseNet121 stands out as the most robust and consistent model among the ones evaluated.

5.1.3 Confusion Matrices

Figure 7: Confusion Matrices of all the models
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5.1.3.1 Confusion Matrices Interpretation

5.1.3.1.1 VGG16 The VGG16 model performed exceptionally well. For the Notumor class, all 405 instances were
correctly classified with no misclassifications. The Meningioma class had 6 misclassified samples: 2 were predicted
as Notumor, 3 as Pituitary, and 1 as Glioma. The Pituitary class had just one misclassification into the Meningioma
class, achieving high precision. For the Glioma class, 13 instances were incorrectly predicted as Meningioma. Overall,
VGG16 demonstrated robust classification performance with only minor confusion, mostly between Glioma and
Meningioma.

5.1.3.1.2 ResNet50 ResNet50 struggled more than other models. For the Notumor class, 122 instances were
misclassified as Meningioma, and 1 as Glioma. The Meningioma class was handled well, with only one instance
misclassified as Pituitary. The Pituitary class saw significant confusion: 92 instances were wrongly predicted as
Meningioma and 1 as Glioma. The Glioma class was particularly problematic, with 218 instances classified as
Meningioma and only 79 correctly predicted. These results show that ResNet50 had major difficulty distinguishing
Meningioma from the other tumor types, especially Glioma.

5.1.3.1.3 MobileNetV2 MobileNetV2 showed strong performance across all classes. For the Notumor class, 393
out of 405 were correctly predicted. The Meningioma class had more spread-out misclassifications: 8 instances
were predicted as Notumor, 17 as Pituitary, and 8 as Glioma. The Pituitary class was nearly perfect with only 5
misclassifications. The Glioma class had 37 instances misclassified as Meningioma and 5 as other classes. Despite some
confusion in Meningioma predictions, the overall performance of MobileNetV2 was quite stable and well-balanced.

5.1.3.1.4 DenseNet121 DenseNet121 delivered excellent classification accuracy. The Notumor class was classified
perfectly with all 405 predictions correct. For the Meningioma class, there were 2 misclassified as Notumor, 6 as
Pituitary, and 5 as Glioma. The Pituitary class had only 3 misclassified samples, and the Glioma class had 13
total misclassifications (mostly as Meningioma and Pituitary). The results highlight DenseNet121’s powerful feature
extraction, especially in differentiating between the tumor types, with minimal error rates.

5.1.3.1.5 Custom CNN The custom-built CNN showed relatively good performance but struggled compared to
the pretrained models. For the Notumor class, 13 samples were misclassified as Meningioma. The Meningioma
class had 6 samples misclassified as Notumor and 3 as Glioma. However, the Pituitary class showed substantial
confusion, with 96 samples misclassified as Meningioma and 3 as Glioma. The Glioma class also faced confusion with
42 misclassifications into Meningioma. While the model performed well on Notumor and Meningioma, it had difficulty
distinguishing between Pituitary and Meningioma.

5.1.3.1.6 Conclusion Among the five models, DenseNet121 and VGG16 exhibited the highest classification
accuracy across all tumor types, particularly excelling in Notumor and Pituitary predictions. MobileNetV2 also
demonstrated strong performance with slightly more confusion between Meningioma and other classes. ResNet50
and the Custom CNN showed significant confusion, especially between Meningioma and Glioma. Overall, pretrained
models with deeper architectures and efficient feature extraction mechanisms significantly outperformed the custom
model in brain tumor classification tasks.
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5.2 Comparative Heatmap Visualization of All Models

Figure 8: XAI of all the models

5.2.1 Model-Specific Interpretability Analysis

5.2.1.1 DenseNet121

5.2.1.1.1 GradCAM: DenseNet121’s GradCAM visualization exhibits a distinctive focal activation pattern with
pronounced intensity in the central to superior brain regions. The highest activation (represented by red-yellow
coloration) forms an ovoid concentration in the upper central area, suggesting that DenseNet121 prioritizes features in
deep cortical and subcortical structures including potentially the corpus callosum, thalamus, and periventricular regions.
The visualization demonstrates a moderate activation gradient that radiates outward with decreasing intensity (green to
blue), indicating a hierarchical feature importance centered on these critical regions. This highly structured activation
pattern likely leverages DenseNet121’s dense connectivity pattern, which facilitates feature reuse across network layers
and enables the model to integrate information from both local textural anomalies and broader structural distortions
characteristic of various tumor phenotypes.

5.2.1.1.2 GradCAM++: The GradCAM++ visualization for DenseNet121 maintains the general localization pattern
observed in GradCAM but demonstrates enhanced precision in boundary delineation. The activation focuses more
sharply on the central upper region with more distinct margins and slightly reduced peripheral activation. This refinement
indicates that DenseNet121’s attention to specific structural features within this region is more precisely weighted when
analyzed through GradCAM++’s pixel-wise gradient weighting approach. The improved localization suggests that
DenseNet121 may be identifying specific anatomical landmarks or textural variations within this region that have high
diagnostic significance. The visualization also shows subtle asymmetry in activation intensity, potentially highlighting
the model’s sensitivity to lateral deviations in brain symmetry—an important radiological indicator for tumor presence.

5.2.1.1.3 Occlusion Sensitivity: DenseNet121’s occlusion sensitivity map reveals a more expansive pattern of
diagnostic relevance compared to gradient-based methods. The high-sensitivity region (red-yellow) extends from the
central structures toward the right hemisphere in a diagonal pattern, encompassing parts of the frontal and parietal
regions. This broader distribution suggests that DenseNet121’s prediction is influenced by spatially distributed features
that collectively contribute to tumor classification. The asymmetric rightward extension is particularly noteworthy,
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as it may indicate that the model has learned to identify subtle hemispheric differences or specific right-hemisphere
features that correlate with tumor presence in the training dataset. The visualization also shows moderate sensitivity
(green areas) in the posterior regions, suggesting that while these areas contribute less significantly to the classification
decision, they still provide contextual information that the model incorporates into its holistic assessment.

5.2.1.1.4 Saliency Map: The saliency map for DenseNet121 displays a distinctly different pattern from the other vi-
sualization methods, characterized by fine-grained, diffuse attention points distributed throughout the brain parenchyma.
This highly granular pattern lacks the obvious regional concentration seen in GradCAM visualizations and instead
highlights numerous discrete points of influence across multiple brain regions. This pattern suggests that DenseNet121,
at the pixel level, is sensitive to specific textural features, intensity variations, and edge characteristics distributed
throughout the brain rather than focusing exclusively on macro-level structural anomalies. The scattered nature of these
attention points may reflect the model’s utilization of DenseNet121’s dense connectivity architecture, which facilitates
the integration of fine-grained features from early layers with more abstract representations from deeper layers. The
diffuse pattern also suggests that the model may be attending to subtle tissue heterogeneity and intensity variations that
characterize tumor infiltration beyond the primary mass.

5.2.1.1.5 SmoothGrad: DenseNet121’s SmoothGrad visualization preserves the distributed attention pattern ob-
served in the standard saliency map but with significantly reduced noise and enhanced coherence of attention regions.
The smoothing effect reveals subtle structural patterns that were obscured by noise in the standard saliency map,
particularly in the central brain regions where clusters of attention points become more apparent. The visualization
shows a balance between distributed attention and some preferential focus on midline structures, suggesting that
DenseNet121 integrates information from both localized anomalies and broader contextual features. The SmoothGrad
pattern reinforces the interpretation that DenseNet121 relies on a combination of fine-grained textural features and
regional structural characteristics, with greater emphasis on the former than might be inferred from GradCAM visualiza-
tions alone. The noise reduction achieved through SmoothGrad’s averaging technique likely provides a more accurate
representation of the truly relevant features influencing DenseNet121’s tumor detection capability.

5.2.1.2 ResNet50

5.2.1.2.6 GradCAM: ResNet50 exhibits a remarkably extensive activation pattern that distinguishes it from other
architectures in this study. The GradCAM visualization reveals intense activation (deep red) spanning a large portion
of the anterior and central brain regions, with substantial extension into frontal, parietal, and temporal lobes. This
expansive activation footprint extends from the frontal pole posteriorly to the parieto-occipital junction, encompassing
cortical and subcortical structures. The intensity distribution shows a gradient with maximal activation (red) in the
anterior and central regions that gradually diminishes (yellow to green to blue) toward the posterior structures. This
broad attention pattern suggests that ResNet50 leverages its deep residual architecture to integrate information from
diverse brain regions, potentially capitalizing on both local tumor characteristics and global structural alterations that
tumors induce in surrounding and distant brain tissues. The extensive nature of the activation may reflect ResNet50’s
ability to consider contextual information spanning multiple anatomical regions, perhaps detecting subtle mass effects,
midline shifts, or ventricular distortions that propagate beyond the immediate tumor vicinity.

5.2.1.2.7 GradCAM++: ResNet50’s GradCAM++ visualization demonstrates a notable refinement compared
to its GradCAM counterpart, with more focused activation predominantly in the central and anterior regions. The
highest intensity activation (red) forms a more defined ovoid pattern centered in the frontoparietal region, with
clearer boundaries and less diffuse peripheral activation. This significant difference in activation pattern between
GradCAM and GradCAM++ suggests that the pixel-wise weighting mechanism of GradCAM++ effectively identifies
the most diagnostically crucial regions within ResNet50’s broad attention field. The more concentrated activation
pattern highlights deep white matter tracts, periventricular regions, and portions of the corpus callosum as particularly
influential in ResNet50’s decision-making process. This refinement indicates that while ResNet50 considers features
from an extensive brain area, certain specific anatomical structures and regions hold substantially greater diagnostic
significance in its tumor detection algorithm.

5.2.1.2.8 Occlusion Sensitivity: The occlusion sensitivity map for ResNet50 reveals a strikingly asymmetric pattern
with high sensitivity in both central structures and along the right cortical margin. This visualization shows distinct
zones of influence: an intense central zone encompassing midline structures (potentially including the ventricles, corpus
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callosum, and deep nuclei) and a separate lateral zone extending along the right hemisphere’s cortical boundary. This
bilateral yet asymmetric pattern suggests that ResNet50’s predictions are influenced by both central structural deviations
and cortical/subcortical junction abnormalities, potentially detecting tumor-induced changes in brain symmetry, ventric-
ular configuration, and cortical architecture. The presence of discrete high-sensitivity zones rather than a uniform field
suggests that ResNet50 may be identifying specific feature combinations across different brain regions that collectively
signal tumor presence. The asymmetric rightward preference might indicate sensitivity to subtle right hemisphere
changes that frequently accompany certain tumor types or locations in the training dataset.

5.2.1.2.9 Saliency Map: ResNet50’s saliency map exhibits a highly granular pattern with scattered attention points
throughout the brain parenchyma, showing slightly greater concentration in central regions and along cortical boundaries.
Unlike the more regionally focused GradCAM visualizations, the saliency map reveals that at the pixel level, ResNet50
attends to numerous discrete features distributed across multiple brain regions. This scattered attention pattern suggests
that the model processes a wide array of fine-grained textural and intensity features rather than relying solely on
regional structural abnormalities. The distribution pattern shows subtle clustering in areas corresponding to white-gray
matter junctions, ventricular margins, and certain sulcal patterns—regions where tumors often cause subtle signal
abnormalities before obvious mass effects become apparent. This distributed attention mechanism likely complements
ResNet50’s ability to process broader structural features, enabling integrated analysis of both micro and macro-level
tumor indicators.

5.2.1.2.10 SmoothGrad: The SmoothGrad visualization for ResNet50 preserves the distributed attention pattern
observed in the standard saliency map but with enhanced clarity and reduced noise. The averaging effect reveals more
coherent attention clusters in central brain regions, particularly around ventricular margins and major white matter
tracts. These smoothed aggregations of attention suggest that while ResNet50 indeed processes information from
numerous distributed points, certain anatomical regions consistently influence its decisions across slight variations
in input. The visualization shows a balance between focused attention on midline structures and distributed feature
processing throughout the brain parenchyma, confirming ResNet50’s multi-scale feature integration strategy. This dual
focus on both localized anomalies and distributed patterns may explain ResNet50’s strong performance, as it mirrors
the radiological approach of assessing both focal tumor characteristics and their effects on broader brain architecture.

5.2.1.3 VGG16

5.2.1.3.11 GradCAM: VGG16 demonstrates a highly distinctive activation pattern characterized by strong, well-
defined activation concentrated in a vertical orientation along the midline structures of the brain. The activation forms
an elongated column with maximum intensity (deep red) in the central superior region, extending vertically with
only minimal lateral spread. This unique vertical alignment suggests that VGG16 focuses predominantly on midline
structures such as the corpus callosum, falx cerebri, interhemispheric fissure, third ventricle, and potentially the superior
sagittal sinus. The sharply defined vertical orientation indicates that VGG16 may be particularly sensitive to midline
shifts, falx displacement, ventricular compression, or other midline structure distortions that commonly accompany
space-occupying lesions. This focused attention on midline structures represents a fundamentally different approach to
tumor detection compared to other models, potentially capitalizing on VGG16’s sequential architecture to track subtle
deviations in these critical reference structures. The narrow lateral spread suggests minimal consideration of peripheral
cortical regions, implying that VGG16 prioritizes central structural integrity over peripheral tissue characteristics in its
diagnostic algorithm.

5.2.1.3.12 GradCAM++: The GradCAM++ visualization for VGG16 preserves the distinctive vertical orientation
observed in GradCAM but exhibits enhanced precision in delineating the most influential structures along this central
axis. The activation remains concentrated in a columnar pattern extending from superior to inferior regions along the
midline, with slightly sharper boundary definition and more nuanced intensity gradations. This refined visualization
emphasizes VGG16’s focused attention on specific components of midline structures rather than treating the entire
midline as uniformly important. The enhanced precision suggests that VGG16 identifies particular anatomical landmarks
along the midline that serve as key reference points for detecting structural distortions associated with tumor presence.
The preserved vertical orientation across both GradCAM and GradCAM++ methods reinforces the interpretation that
midline structural integrity represents the primary diagnostic criterion in VGG16’s tumor detection approach. This
consistency between visualization methods suggests that VGG16’s attention pattern is strongly determined by its
architectural characteristics, with its sequential convolutional layers perhaps particularly well-suited to detecting subtle
deviations in the linearity and symmetry of midline structures.
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5.2.1.3.13 Occlusion Sensitivity: VGG16’s occlusion sensitivity map reveals a remarkably consistent vertical band
of high sensitivity that closely corresponds to the central activation pattern observed in GradCAM visualizations. This
vertical concentration confirms VGG16’s strong reliance on midline structures for tumor detection, with particularly
high sensitivity (red-yellow) in the superior central region that gradually diminishes inferiorly. The precise alignment
between occlusion sensitivity and GradCAM patterns is noteworthy, as it indicates that VGG16’s attention mechanism
is robust across different interpretability approaches. The occlusion sensitivity visualization provides additional insight
by showing subtle gradations in sensitivity along the vertical axis, with maximum sensitivity in regions corresponding
to the corpus callosum and adjacent structures. This pattern suggests that occlusion of these specific anatomical
landmarks would most significantly impact VGG16’s ability to detect tumors, reinforcing their crucial role in the
model’s diagnostic algorithm. The narrow lateral spread of the sensitivity pattern further confirms VGG16’s limited
utilization of peripheral brain features compared to central structural indicators.

5.2.1.3.14 Saliency Map: In contrast to the regionally focused patterns observed with other visualization techniques,
VGG16’s saliency map exhibits a diffuse distribution of fine-grained attention points throughout the brain parenchyma.
These granular attention points show subtle clustering along central structures but extend significantly into peripheral
regions as well. This more distributed pattern suggests that while VGG16 focuses predominantly on midline structures
at a regional level (as shown by GradCAM), it simultaneously processes subtle textural and intensity features throughout
the brain at the pixel level. The presence of attention points in peripheral regions indicates that VGG16 integrates
information from cortical and subcortical areas, potentially detecting subtle signal abnormalities characteristic of tumor
infiltration or edema that extend beyond obvious structural distortions. This dual attention mechanism—focused regional
attention combined with distributed pixel-level processing—may enable VGG16 to detect both obvious structural
deviations and subtle infiltrative changes, enhancing its diagnostic versatility.

5.2.1.3.15 SmoothGrad: VGG16’s SmoothGrad visualization provides a noise-reduced representation of the
saliency pattern, revealing more coherent attention clusters along midline structures while preserving some distributed
attention throughout the brain parenchyma. The smoothing effect highlights consistency in VGG16’s attention to central
structures across slight variations in input, reinforcing the importance of these regions in its decision-making process.
The visualization shows a balance between focused attention on the vertical midline axis and more distributed processing
of contextual features, suggesting that VGG16 integrates information across multiple scales despite its primary focus on
midline integrity. The enhanced definition of attention regions achieved through SmoothGrad’s averaging technique
clarifies the anatomical correlates of VGG16’s attention, with notable focus on ventricular margins, the corpus callosum,
and the interhemispheric fissure—structures whose configuration often reflects mass effects from adjacent tumors. This
multi-scale processing approach likely contributes to VGG16’s effectiveness by enabling detection of both direct tumor
characteristics and the indirect structural changes they induce.

5.2.1.4 MobileNetV2

5.2.1.4.16 GradCAM: MobileNetV2’s GradCAM visualization reveals an extensive activation pattern with remark-
able similarities to ResNet50, despite the substantial architectural differences between these models. The visualization
shows intense activation (deep red) covering a large portion of the anterior and central brain regions, with gradual
diminution (yellow to green to blue) toward posterior regions. This broad activation field encompasses frontal lobes,
anterior portions of the parietal lobes, and deep central structures including the corpus callosum, basal ganglia, and
thalamus. The expansive nature of this activation pattern is particularly noteworthy given MobileNetV2’s lightweight
design, which employs depthwise separable convolutions to reduce computational complexity. This suggests that
MobileNetV2’s efficient architecture still enables comprehensive feature integration across wide brain regions, capturing
both focal tumor characteristics and broader contextual information. The anterior-weighted activation pattern might
indicate sensitivity to frontal lobe tumors in the training dataset or could reflect the model’s attention to frontal horn
ventricular configurations, which often show early displacement in the presence of space-occupying lesions. The
gradient of activation intensity from anterior to posterior suggests a hierarchical weighting of features, with anterior
structures contributing more significantly to classification decisions.

5.2.1.4.17 GradCAM++: MobileNetV2’s GradCAM++ visualization demonstrates the most dramatic refinement
in activation pattern compared to GradCAM among all models analyzed. While the GradCAM visualization showed
extensive activation across anterior and central regions, the GradCAM++ visualization reveals remarkably focused
activation concentrated primarily in a well-defined ovoid region in the central brain. This striking difference indicates
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that GradCAM++’s pixel-wise weighting mechanism effectively identifies a much more specific region of diagnostic
relevance within MobileNetV2’s broader attention field. The focused activation corresponds approximately to the region
containing the lateral ventricles, corpus callosum, and periventricular white matter—structures that frequently show
displacement, infiltration, or signal abnormalities in the presence of brain tumors. This substantial refinement suggests
that while MobileNetV2 processes information from a wide brain area, its classification decision is disproportionately
influenced by features extracted from these central structures. The significant disparity between GradCAM and
GradCAM++ visualizations for MobileNetV2 highlights the importance of employing multiple complementary XAI
techniques, as they may reveal different aspects of model behavior that would not be apparent from a single visualization
approach.

5.2.1.4.18 Occlusion Sensitivity: MobileNetV2’s occlusion sensitivity map exhibits a complex pattern with striking
similarity to that of ResNet50, revealing high sensitivity in both central regions and extending asymmetrically toward
the right cortical margin. This visualization identifies multiple zones of influence: an intense central zone encompassing
midline structures and periventricular regions, and a secondary zone extending toward the right hemisphere’s cortical-
subcortical junction. The bilateral yet asymmetric pattern suggests that MobileNetV2’s predictions incorporate
information about structural symmetry, potentially detecting subtle hemispheric differences that may indicate mass
effect from a tumor. The similarity to ResNet50’s occlusion sensitivity pattern, despite architectural differences, suggests
that both models have converged on similar diagnostic features—possibly reflecting fundamental neuroanatomical
indicators of tumor presence rather than model-specific biases. The high sensitivity along ventricular margins and white
matter tracts may indicate that MobileNetV2 is particularly attentive to subtle deformations in these structures, which
often serve as early radiological indicators of adjacent tumors before macroscopic mass effect becomes apparent.

5.2.1.4.19 Saliency Map: The saliency map for MobileNetV2 displays a diffuse, granular pattern of attention
points distributed throughout the brain parenchyma with minimal regional concentration. This fine-grained attention
distribution contrasts with the more focused patterns observed in GradCAM++ and suggests that at the pixel level,
MobileNetV2 processes numerous discrete features across diverse brain regions. The scattered attention points show
subtle coalescence around ventricular margins and major white matter tracts but extend significantly into cortical
regions as well. This pattern indicates that MobileNetV2 integrates information from both deep and superficial
brain structures, potentially identifying subtle signal heterogeneities, textural abnormalities, and intensity variations
associated with tumor tissue. The distributed nature of these attention points may reflect MobileNetV2’s depthwise
separable convolution architecture, which processes spatial and channel information separately, potentially facilitating
detection of subtle feature variations across the entire image rather than focusing exclusively on regionally concentrated
abnormalities.

5.2.1.4.20 SmoothGrad: MobileNetV2’s SmoothGrad visualization provides enhanced clarity to the distributed
attention pattern seen in the standard saliency map, with reduced noise revealing more coherent attention clusters in
central brain regions. The smoothing effect highlights consistency in MobileNetV2’s attention to ventricular margins and
periventricular white matter across slight input variations, suggesting these structures consistently influence its decisions
despite the broadly distributed attention pattern. The visualization shows a balance between focused attention on central
structures and more distributed processing throughout the brain parenchyma, confirming MobileNetV2’s multi-scale
feature integration strategy. This dual focus on both specific anatomical regions and distributed textural features likely
enhances MobileNetV2’s diagnostic capability by enabling detection of both obvious structural distortions and subtle
infiltrative changes. The preservation of some attention points in cortical regions even after smoothing suggests that
MobileNetV2 consistently values certain cortical features across input variations, potentially identifying subtle cortical
signal abnormalities associated with tumor-induced edema or infiltration.

5.2.1.5 Custom CNN

5.2.1.5.21 GradCAM: The Custom CNN demonstrates a distinctly different activation pattern compared to the
pre-trained models, with more localized and less intense activation focused on specific regions in the lower portion of
the brain. This suggests that the Custom CNN has learned to attend to different features, potentially identifying tumor
characteristics in regions that other models might overlook.
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5.2.1.5.22 GradCAM++: The GradCAM++ visualization for the Custom CNN shows similar localization to its
GradCAM counterpart but with slightly enhanced precision. The activation remains concentrated in specific lower brain
regions, confirming that the Custom CNN consistently focuses on these areas across different XAI methods.

5.2.1.5.23 Occlusion Sensitivity: The Custom CNN’s occlusion sensitivity map reveals heightened sensitivity in
the lower right portion of the brain, with a more focused pattern than seen in other models. This suggests that the
Custom CNN’s predictions would be particularly affected by changes in this specific region, indicating a more targeted
approach to feature detection.

5.2.1.5.24 Saliency Map: The saliency map for the Custom CNN shows sparse attention points throughout the
brain with some concentration in the lower regions. This pattern aligns with the GradCAM visualizations, suggesting
consistent attention to specific features in the lower brain areas.

5.2.1.5.25 SmoothGrad: The Custom CNN’s SmoothGrad visualization provides a clearer representation of the
model’s attention pattern, confirming focus on specific regions in the lower brain. The visualization suggests that the
Custom CNN has learned to identify tumor-related features that are spatially distinct from those prioritized by the
pre-trained models.

5.2.2 Comparative Analysis Across Models

5.2.2.1 Attention Breadth and Distribution:

The analyzed models demonstrate remarkable diversity in the spatial extent and distribution of their attention
patterns, revealing fundamentally different approaches to feature extraction and integration. ResNet50 and Mo-
bileNetV2 exhibit the most expansive activation patterns in GradCAM visualizations, suggesting architectural
capabilities for integrating information across extensive brain regions. ResNet50’s activation encompasses anterior
and central regions with a gradual posterior gradient, while MobileNetV2 shows similar activation with more
distinct anterior predominance. This broad attention strategy potentially enables these models to capture both focal
tumor characteristics and distant effects such as edema, mass effect, and ventricular displacement. In contrast, the
Custom CNN demonstrates the most focused attention, with highly localized activation in inferior brain regions,
suggesting specialized adaptation to particular tumor phenotypes. DenseNet121 shows moderate activation spread
centered on central brain structures, while VGG16 exhibits a unique vertical orientation along midline structures.
These diverse attention patterns reflect architectural differences, with ResNet50’s residual connections facilitating
long-range feature integration, VGG16’s sequential structure emphasizing central reference structures, and the
Custom CNN’s specialized architecture focusing on region-specific features.

5.2.2.2 GradCAM vs. GradCAM++ Comparison:

The relationship between GradCAM and GradCAM++ visualizations provides insight into the hierarchical impor-
tance of features. MobileNetV2 demonstrates dramatic refinement, transitioning from broad activation to highly
focused central structures, indicating a disproportionate influence of these regions on final predictions. ResNet50
shows considerable refinement but retains more breadth. DenseNet121 and VGG16 show modest refinements, while
the Custom CNN displays the most consistent relationship between the two techniques. These findings highlight
differences in feature importance hierarchies, with MobileNetV2 having steeper gradients, and others like VGG16
and Custom CNN showing more uniform feature weighting.

5.2.2.3 Cross-Method Consistency:

Analysis across different XAI methods shows striking differences. VGG16 shows the most consistent attention
pattern, focusing on central midline structures across methods including GradCAM, GradCAM++, and occlusion
sensitivity. The Custom CNN also shows high consistency with focus on inferior regions. MobileNetV2 varies widely,
suggesting complex, multi-level feature utilization. DenseNet121 and ResNet50 exhibit intermediate consistency.
These observations underscore the importance of using multiple XAI techniques for comprehensive interpretation.
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5.2.2.4 Saliency Characteristics and Fine-Grained Features:

Saliency maps and SmoothGrad visualizations reveal differences in fine-grained feature usage. Pre-trained models
(DenseNet121, ResNet50, VGG16, MobileNetV2) show widely distributed attention, integrating textural and
intensity features. The Custom CNN shows a sparse, focused pattern limited to inferior regions, suggesting
reliance on a limited set of features. VGG16 shows structured clustering along midline structures, while ResNet50
demonstrates uniform distribution. SmoothGrad’s noise reduction highlights how models integrate micro-level
features with macro-level context.

5.2.2.5 Occlusion Sensitivity Patterns and Causal Importance:

Occlusion maps directly highlight causal importance of regions. All models show central region sensitivity, but
with variation: ResNet50 and MobileNetV2 share similar patterns despite architectural differences, both focusing on
central structures and right cortical margin. VGG16 shows a vertical sensitivity band matching its GradCAM
activation. DenseNet121 shows asymmetric right-side focus. Custom CNN shows localized sensitivity to inferior
brain regions. These patterns imply differences in diagnostic strategy, influencing generalizability and clinical
reliability.

5.2.2.6 Anatomical Correlates of Model Attention:

Visualization methods reveal distinct anatomical structures driving model decisions. ResNet50 and MobileNetV2
focus on frontal and central structures, potentially reflecting sensitivity to ventricular changes, white matter
distortion, and mass effect. VGG16 emphasizes midline structures such as the corpus callosum and falx cerebri.
DenseNet121 attends to subcortical structures and ventricles, while the Custom CNN focuses on inferior brain
regions like the cerebellum and temporal lobes. These preferences reflect different detection strategies and can
inform model selection for specific tumor locations.

6 Conclusion

This study evaluated the performance of five convolutional neural network (CNN) architectures—VGG16, ResNet50,
MobileNetV2, DenseNet121, and a Custom CNN—for brain tumor classification across four tumor types: meningioma,
glioma, pituitary, and no tumor. Among all models, DenseNet121 and VGG16 demonstrated exceptional accuracy
and robustness, achieving perfect classification metrics and ROC-AUC scores across all classes. MobileNetV2 also
performed remarkably well with near-perfect results, offering a lightweight yet accurate solution. The Custom CNN
showcased promising outcomes, particularly considering its simplicity, while ResNet50, though strong overall, showed
class-wise variation in performance and room for further optimization. Additionally, explainability techniques using
XAI heatmaps provided valuable insights into the regions of interest influencing each model’s predictions, enhancing
interpretability and trust in the decision-making process. Overall, DenseNet121 emerged as the most reliable and
consistent model, balancing accuracy, interpretability, and generalization capability. Future work could focus on further
optimizing lightweight models like MobileNetV2 for deployment in real-time clinical applications, and refining custom
architectures for better generalization with fewer resources.
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