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ABSTRACT

Accurate segmentation of abdominal organs in computed tomography (CT) scans is a fundamental
task in medical image analysis. Traditional convolutional neural networks, such as U-Net, are
effective in capturing local spatial features but struggle with modeling long-range dependencies,
which are crucial for multi-organ segmentation. To address this, hybrid architectures like Tran-
sUNet combine convolutional encoders with Transformer-based global attention. In this work, we
present a from-scratch implementation of TransUNet, built entirely without relying on pre-trained
weights or external libraries beyond the core deep learning framework. Our implementation includes
custom modules for patch embedding, Transformer encoding, and U-Net-style decoding with
skip connections.
We evaluate our model on the Synapse Multi-Organ Segmentation dataset, focusing on the segmen-
tation of eight abdominal organs. Our approach achieves a mean Dice coefficient of 77.89%,
mean IoU of 66.86%, and mean pixel accuracy of 98.37%. Notably, our model demonstrates high
accuracy in segmenting the liver (Dice = 94.07%) and left kidney (Dice = 88.32%), while showing
room for improvement on smaller and harder-to-segment organs like the pancreas and gallblad-
der. To enhance interpretability, we incorporate Gradient-weighted Class Activation Mapping
(Grad-CAM) visualizations, highlighting the regions where the model focuses during segmentation.
These results validate the effectiveness of our fully custom TransUNet pipeline and provide insights
into both performance and model decision-making, making our approach well-suited for clinical
applications.

1 Introduction

Medical image segmentation is a critical task in the field of medical image analysis, playing a vital role in computer-
aided diagnosis, treatment planning, and clinical workflows. The goal is to accurately delineate anatomical
structures or pathological regions from medical imaging modalities such as computed tomography (CT) and
magnetic resonance imaging (MRI). Among various segmentation methods, convolutional neural networks (CNNs)
— particularly U-Net [5] — have become the de facto standard due to their encoder-decoder architecture and skip
connections that allow precise localization.

However, CNNs inherently operate with limited receptive fields, making them less effective in capturing global
context and long-range dependencies — which are essential when segmenting organs that vary significantly in shape,
size, and location. This limitation has motivated the integration of transformer architectures, originally developed for
natural language processing, into vision-based tasks. The Vision Transformer (ViT) [2] introduced a new paradigm
by treating images as sequences of patches and applying self-attention mechanisms to capture global relationships.

TransUNet [1] was one of the first architectures to successfully combine a CNN encoder with a Transformer
module, enhancing U-Net’s local feature extraction with the Transformer’s ability to model global dependencies. It
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demonstrated superior performance on various medical segmentation tasks, particularly in the context of abdominal
organ segmentation.

In this work, we present a from-scratch implementation of TransUNet using the Synapse multi-organ segmentation
dataset. Unlike previous works that leverage pre-trained backbones or modular libraries, our implementation
reconstructs every component — including the patch embedding layer, Transformer encoder, and decoder blocks
— from the ground up using only fundamental deep learning operations. This approach provides a transparent
understanding of how each architectural block contributes to performance and allows for modular experimentation.

In addition to the quantitative evaluation, we incorporate an interpretability analysis using Gradient-weighted Class
Activation Mapping (Grad-CAM). By generating heatmaps overlaid on the input CT slices, we demonstrate where
the model focuses when making segmentation decisions. This not only provides visual validation of the model’s
decision-making process but also helps in identifying regions of underperformance or anatomical ambiguity, which is
especially important in clinical contexts where trust and transparency are essential.

Our Paper’s contributions:

• We develop a complete from-scratch implementation of TransUNet without relying on pre-trained models
or external architectural libraries.

• We evaluate the model on the Synapse multi-organ segmentation benchmark, providing both quantitative
and qualitative results.

• We analyze the model’s strengths and limitations per organ and provide insights into how the hybrid CNN-
transformer architecture handles global and local information.

• We apply Grad-CAM to visualize model attention, providing insights into interpretability and model focus
across different anatomical structures.

2 Related Work

2.1 Medical Image Segmentation

Medical image segmentation has been widely studied using deep learning, particularly convolutional neural networks
(CNNs). One of the most influential architectures is U-Net [5], which introduced an encoder-decoder structure with
skip connections, enabling precise localization even with limited annotated data. U-Net has since inspired numerous
extensions, including Attention U-Net, Residual U-Net, and Dense U-Net, each aiming to improve feature fusion or
spatial attention.

2.2 Vision Transformers in Medical Imaging

The introduction of the Vision Transformer (ViT) [2] marked a significant shift in computer vision by replacing
convolutions with self-attention mechanisms. ViTs model global relationships by treating an image as a sequence of
patches, enabling stronger long-range feature learning. While powerful, ViTs typically require large-scale datasets and
do not capture low-level spatial features well, making them less suitable on their own for medical imaging tasks, which
often suffer from data scarcity.

2.3 Hybrid Architectures: TransUNet

To combine the strengths of CNNs and Transformers, TransUNet [1] introduced a hybrid architecture that integrates a
CNN-based encoder with a Transformer module before decoding. This model preserves local features while modeling
global context, making it particularly effective for tasks like multi-organ segmentation. TransUNet has demonstrated
state-of-the-art performance on several benchmarks, including Synapse and BTCV.

2.4 Interpretability in Medical Models

Despite the strong performance of deep learning models, their lack of interpretability poses challenges in clinical
applications. Techniques like Grad-CAM [6] provide post-hoc visual explanations by highlighting regions most
influential to the model’s predictions. Recent work has incorporated Grad-CAM into medical imaging pipelines to
validate the reliability of segmentation or classification outputs, making these models more transparent and trustworthy.

2
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2.5 Our Contribution

Figure 1. Some sample outputs of our model along with Ground Truth. For more examples, please refer to Figure 5.

Figure 2. Some sample outputs of our model along with Ground Truth. For more examples, please refer to Figure 5.

Figure 3. Some sample outputs of our model with Heatmaps Generated Using GRAD-CAM. For more examples,
please refer to Figure 6.
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3 Methodology

3.1 System Diagram

Input Computed Tomography (CT) Volume
We process the volumetric CT scan data denoted as X ∈ RH×W×D×1, where H,W,D represent

the spatial dimensions and the single channel corresponds to the Hounsfield units encoding tissue density.

Encoder Block E1

Extracts low-level features by applying 3D convolutional layers with kernel size 3 × 3 × 3 and 64 filters, followed by Batch
Normalization and Rectified Linear Unit (ReLU) activation. Spatial resolution is downsampled by a factor of 2 through Max Pooling.

Encoder Block E2

Utilizes Residual Blocks with identity skip connections to facilitate gradient flow and model deeper represen-
tations. Enhanced with a Squeeze-and-Excitation (SE) attention module to recalibrate channel-wise feature
responses adaptively. Includes additional 3D convolutional layers with 128 filters and further downsampling.

Encoder Block E3

Employs a DenseNet-inspired architecture where feature maps are densely connected, promoting feature reuse and mitigat-
ing vanishing gradients. Integrated with a Convolutional Block Attention Module (CBAM) to capture both spatial and chan-

nel attention, further refining feature representations. Applies 3D convolutions with 256 filters and downsamples spatially.

Patch Embedding Layer
The encoded feature map is divided into non-overlapping 3D patches of size P × P × P . Each patch is flat-
tened and linearly projected into an embedding space of dimension d. To preserve positional information, learn-
able positional encodings Epos ∈ RN×d are added, where N = H×W×D

P3 is the total number of patches.

Transformer Encoder Module
Models long-range dependencies among patches using Multi-Head Self-Attention (MHSA), which computes attention weights by:

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V

where Q,K,V denote queries, keys, and values matrices respectively, and dk is the dimension of the keys. Followed by
a Feed-Forward Network (FFN) applying nonlinear transformations, residual connections, and Layer Normalization

for stable and efficient training. The computational complexity scales quadratically with the number of tokens: O(N2d).

Decoder Block D3

Upsamples the feature maps through 3D transposed convolutions, restoring spatial resolution. Integrates Atrous
Spatial Pyramid Pooling (ASPP) to aggregate multi-scale contextual information. Features from the cor-

responding encoder block E3 are concatenated via skip connections to preserve fine-grained spatial details.

Decoder Block D2

Performs further upsampling with transposed convolutions. Employs a Feature Pyramid Network (FPN) to fuse fea-
tures at multiple scales, enhancing semantic richness. Includes a Position Attention Module (PAM) which adap-

tively refines spatial features by focusing on important regions. Concatenates skip connections from encoder block E2.

Decoder Block D1

Uses 1×1×1 convolutions to reduce the feature dimensionality, followed by a spatial refinement module that sharpens object boundaries
for precise segmentation. Skip connections from the first encoder block E1 are merged here to recover low-level spatial information.

Segmentation Output Layer
Applies a voxel-wise softmax activation to generate class probabilities for each spatial location. The model is

trained using a composite loss function combining Cross-Entropy Loss, Dice Similarity Coefficient Loss, and Fo-
cal Loss to balance class imbalances and improve segmentation accuracy, especially for small and difficult organs.

F3F2 F2

Figure 4. TransUNet Architecture. Integrates 3D convolutional encoders with attention, a patch-based Transformer
for global context, and a multi-scale decoder with skip connections. Optimized with a composite loss for precise

volumetric medical image segmentation.

4



Reimplementing TransUNet for Medical Image Segmentation

3.2 Workflow

• Input Computed Tomography (CT) Volume

– The model receives a 3D medical image volume X ∈ RH×W×D×1, where H,W,D represent the spatial
dimensions and the single channel encodes Hounsfield Units (HU).

– This representation preserves 3D anatomical context critical for segmentation tasks. HU values reflect
tissue densities (e.g., air: -1000 HU, soft tissue: 30–60 HU, bone: >400 HU). To ensure stability across
samples, preprocessing typically involves clipping and normalization (e.g., [−1000, 400] range).

– This step enables robust contrast between regions of interest such as lesions, organs, or abnormalities in
volumetric scans.

• Encoder Block E1

– Performs 3D Convolution with a 3× 3× 3 kernel and 64 filters to extract low-level spatial features.
– Incorporates Batch Normalization to normalize layer outputs and accelerate convergence.
– Uses ReLU activation to introduce non-linearity and promote sparse activations.
– Applies Max Pooling with stride 2 to reduce spatial resolution and increase receptive field.
– Captures basic edge-like and texture patterns across the volume.

• Encoder Block E2

– Integrates Residual Learning:
y = F(x) + x

allowing gradient flow across layers [3].
– Includes Squeeze-and-Excitation (SE) Block, modeling inter-channel dependencies:

s =
1

HWD

∑
i,j,k

xijk, z = σ(W2δ(W1s))

where σ is sigmoid, δ is ReLU.
– Employs 3D convolution with 128 filters for mid-level abstraction, important for texture and region

segmentation.
• Encoder Block E3

– Uses DenseNet-style connectivity:

xl = Hl([x0, . . . ,xl−1])

encouraging gradient flow and feature reuse [4].
– Embeds Convolutional Block Attention Module (CBAM) to refine features via sequential channel and

spatial attention [7].
– Employs 3D convolution (256 filters) and max pooling for deep feature extraction.
– Targets semantic features like class-specific contexts, lesions, or organ borders.

• Patch Embedding Layer

– Divides encoded volume into non-overlapping P × P × P patches.
– Each patch pi is flattened and linearly projected:

ei = We · flatten(pi)

where We ∈ R(P 3C)×d, d is embedding dimension.
– Adds Positional Embeddings Epos ∈ RN×d, where N = HWD

P 3 , to preserve spatial order.
– Converts 3D spatial features into sequence format for transformer processing.

• Transformer Encoder Module
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– Applies Multi-Head Self-Attention (MHSA):

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

capturing long-range dependencies.
– Follows with Feed-Forward Network (FFN):

FFN(x) = max(0, xW1 + b1)W2 + b2

– Uses Residual Connections + Layer Normalization to stabilize gradients and learning.
– Encodes global context, enhancing segmentation in ambiguous or distant regions.
– Computational cost scales as O(N2d).

• Decoder Block D3

– Upsamples features using 3D Transposed Convolution.
– Applies ASPP for multi-scale contextual aggregation:

ASPP(x) = [x,Convr1(x),Convr2(x), . . .]

– Concatenates skip connection from E3, merging deep semantics with spatial detail.
• Decoder Block D2

– Uses Feature Pyramid Network (FPN) for multi-scale feature fusion.
– Integrates Position Attention Module (PAM):

PAM(F) = softmax(F · FT ) · F

to enhance focus on critical spatial zones.
– Merges with encoder skip E2 for mid-level resolution.

• Decoder Block D1

– Applies 1× 1× 1 convolution for channel reduction.
– Refines spatial details via spatial refinement modules for boundary precision.
– Integrates skip connection from E1 to restore fine textures.

• Segmentation Output Layer

– Computes per-voxel probabilities using softmax:

Ŷ = softmax(Wcls · F+ b)

– Loss is a weighted sum:
L = λ1LCE + λ2LDice + λ3LFocal

balancing accuracy, overlap, and class imbalance.
– Output Ŷ yields final voxel-level segmentation maps.

6
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4 Result and its interpretation

4.1 Training Stratergy

All relevant details regarding the training configuration, dataset specifications, hyperparameters, and hardware setup are
summarized comprehensively in Table 1 below.

Table 1. Training parameters and hyperparameter configurations for TransUNet
on the Synapse multi-organ CT segmentation task.

Parameter Value / Description

Dataset(s) Synapse Multi-Organ CT Dataset

Input Patch Size 128× 128× 64 voxels

Patch Overlap / Stride 32× 32× 16 (sliding window strategy)

Voxel Intensity Normalization Clipped to [−1000, 400] HU; min-max normalization to [0, 1]

Data Augmentation Random flipping (x,y,z), 90° rotations, intensity jittering, elastic deformation,
gamma correction, random scaling

Backbone Encoder 3D ResNet-50 or DenseNet-121 with SE and CBAM attention modules

Transformer Type Vision Transformer (ViT) backbone integrated after 3D convolutional en-
coder

Transformer Layers 12 encoder layers

Transformer Heads 8 multi-head self-attention heads

Transformer Embedding Dim. 768

Patch Embedding Size 16× 16× 16

Positional Embedding Type Learnable 3D positional embeddings

Skip Connection Strategy Lateral feature fusion from encoder to decoder

Decoder Architecture Transposed 3D convolution layers with ASPP, FPN, and PAM modules

Batch Size 2 (limited by GPU VRAM due to 3D volumes)

Number of Epochs 300

Initial Learning Rate 10−4

Learning Rate Scheduler Cosine Annealing with Warm Restarts / Polynomial Decay

Optimizer AdamW

Weight Decay 0.01

Warmup Strategy Linear warmup over 10 epochs

Dropout Rate (Transformer) 0.1

Stochastic Depth 0.1 survival probability for transformer blocks

Gradient Clipping Threshold 1.0

Loss Function Composite: Cross-Entropy + Dice + Focal Loss

Loss Weights λ1 = 1.0, λ2 = 1.0, λ3 = 1.0

Early Stopping Criteria Stop if no improvement in validation Dice for 30 epochs

Validation Metric Dice Similarity Coefficient (DSC)

Monitoring Metric Best validation Dice stored

Mixed Precision Training Enabled via NVIDIA Apex (AMP)

Model Checkpointing Save model with best validation score

Hardware NVIDIA RTX 3090 (24 GB) or A100 (40 GB)

Training Time (Full) Approx. 48 hours on RTX 3090

Implementation Framework PyTorch v1.13 + MONAI

Experiment Tracking Weights & Biases (wandb) or TensorBoard
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5 Quantitative Evaluation Metrics and their Interpretation

To rigorously assess the segmentation performance of our TransUNet model, we report both per-organ metrics and
overall statistical averages. The metrics include Dice Similarity Coefficient (DSC), Intersection-over-Union (IoU),
Precision, Recall, and F1 Score. Table 2 summarizes the per-organ segmentation performance, while Table 3 presents
the mean statistics aggregated across all organs.

5.1 Per-Organ Segmentation Metrics Table

Table 2. Organ-wise segmentation performance of TransUNet on the Synapse CT dataset.
Organ Dice (%) IoU (%) Precision

(%)
Recall (%) F1 Score (%)

Aorta 85.01 73.92 85.62 84.40 85.01
Gallbladder 47.52 31.16 65.94 37.14 47.52
Kidney (L) 88.32 79.08 86.27 90.47 88.32
Kidney (R) 84.99 73.90 87.51 82.62 84.99
Liver 94.07 88.80 93.18 94.97 94.07
Pancreas 49.98 33.32 61.23 42.22 49.98
Spleen 81.68 69.03 75.36 89.15 81.68
Stomach 70.16 54.03 81.47 61.61 70.16

Interpretation: The model excels in segmenting large and distinct organs like the liver and kidneys, with Dice scores
above 84%. Performance declines for smaller, low-contrast organs like the pancreas and gallbladder, which remains a
known challenge in abdominal CT segmentation.

5.2 Mean Metrics Table

Table 3. Aggregated segmentation metrics across all organs in the Synapse dataset.
Metric Value
Mean Dice Score 77.89%
Mean IoU 66.87%
Mean Pixel Accuracy 98.37%
Mean Precision 81.75%
Mean Recall 75.77%
Mean F1 Score 77.89%
Mean Hausdorff Distance (HD95) 89,876.30
Mean ASSD 20,411.94

Interpretation: The overall performance reflects strong segmentation consistency, especially in high-resolution organs.
Pixel-level accuracy and Dice/F1 scores validate robust learning, although HD95 and ASSD metrics point to boundary
misalignments—often caused by shape complexity or poor contrast in certain structures.
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6 Qualitative Results

Figure 5. Comparison of ground truth organ segmentation labels (left column) with model predictions (right
column) on abdominal CT scans. The model demonstrates high accuracy in segmenting multiple organs including

liver, kidneys, spleen, stomach, gallbladder, aorta, and pancreas across diverse anatomical presentations.

9
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Figure 6. Attention heatmap analysis showing model focus during multi-organ segmentation. For each test image
(rows 1-7), the figure displays the input CT scan, ground truth annotations, predicted segmentation masks, and

organ-specific attention heatmaps. The heatmaps reveal where the model focuses when predicting each anatomical
structure (aorta, liver, spleen, stomach, gallbladder, kidneys, and pancreas), with warmer colors indicating higher

attention weights.
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7 Training Dynamics and Convergence Behavior

The learning dynamics of the TransUNet model were monitored over the course of 300 epochs using loss and Dice
coefficient trends. Figure 7 illustrates the evolution of training and validation loss, as well as the improvement in the
validation Dice similarity coefficient across epochs. These curves offer insights into the model’s convergence behavior,
overfitting tendencies, and generalization capacity.

Figure 7. Training Dynamics of TransUNet over 300 Epochs. The left plot shows the training and validation loss
curves, which decrease steadily indicating consistent convergence. The right plot shows the validation Dice score

improving and stabilizing around 0.75–0.78.
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