
TRANSEXPLAIN: A UNIFIED FRAMEWORK FOR FINE-GRAINED,
CLASS-CONDITIONED EXPLAINABILITY IN VISION AND

LANGUAGE TRANSFORMER MODELS

Jayan Ghimire

Software Engineer and Independent AI Researcher

Leapfrog Technology

Kathmandu, Nepal

jghimire.034@gmail.com

ABSTRACT

Transformer-based architectures have achieved state-of-the-art performance across both computer
vision and natural language processing tasks due to their ability to model long-range dependencies
through self-attention mechanisms. However, their inherently opaque internal representations pose
significant challenges for trust, fairness, and accountability in real-world deployment. In this work,
we present TransExplain, a principled and modular explainability framework for interpreting
transformer models in both the visual and textual domains. Unlike prior methods that rely heavily
on attention heuristics or are architecture-specific, TransExplain introduces customized Layer-wise
Relevance Propagation (LRP) strategies tailored for Vision Transformers (ViT, DeiT) and BERT-
based language models. In the vision pipeline, we generate class-discriminative heatmaps that
localize predictive evidence by backpropagating relevance through self-attention and MLP layers.
For text classification, we produce token-level attribution scores that transparently reveal how
semantic elements contribute to the model’s prediction. TransExplain supports flexible classification
schemas, is compatible with pretrained transformer models, and delivers consistent, theoretically
grounded explanations across modalities. This work lays a strong foundation for future research on
unified multimodal interpretability while addressing the pressing need for reliable explanation tools
in unimodal transformer-based systems.

1 Introduction

1.1 Motivation

Transformer models have fundamentally reshaped the landscape of machine learning by enabling highly effective
representations in both vision and language domains. Their self-attention mechanisms excel at capturing intricate
contextual relationships, empowering breakthroughs in tasks such as object recognition, image captioning, and
sentiment classification. However, the internal workings of these architectures remain largely inscrutable, limiting
our ability to understand and trust their decisions.

Existing interpretability approaches—ranging from attention weight visualizations to gradient-based attribu-
tion—often fall short in delivering consistent, class-specific explanations, especially in multimodal scenarios where
inputs span both images and text. Furthermore, many methods lack theoretical grounding, relying on heuristics that
may obscure the true reasoning pathways of the model.

To advance explainability for transformer-based systems, there is a pressing need for an integrated framework
that unifies attribution techniques across modalities with solid theoretical foundations. By combining principled
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relevance propagation with flexible class-conditioned explanations, such a system can unlock transparent insights
into what features the model deems important, thereby facilitating debugging, fairness evaluation, and user trust.

1.2 Our Paper’s Contribution

• We propose a custom-designed visual explanation module for Vision Transformers (ViT) and DeiT,
which utilizes an enhanced form of Layer-wise Relevance Propagation (LRP) tailored for attention-heavy
architectures. This generates class-specific, spatially grounded heatmaps for the top-k predicted categories.

• We develop a novel textual explanation algorithm for BERT-based classifiers, supporting any user-defined
classification schema via a dynamic classifications array. The method computes token-level relevance
scores using a custom relevance propagation method that aligns with transformer internals.

• The framework enables fine-grained, class-conditioned attribution across both modalities, maintaining
conceptual consistency between how relevance is propagated in visual and textual domains.

• Unlike heuristic or attention-only visualizations, our method is theoretically grounded, providing transparent
and reliable interpretations by leveraging proper relevance decomposition for transformer layers.

Figure 1: TransExplain for visual inputs from different classes. For more examples, see Figures 6 and 7.

Figure 2: TransExplain for textual inputs of different connotations. For more examples, see Figures 8 and 9.
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2 Related Work

2.1 Explainability in Vision Transformers

The rise of Vision Transformers (ViTs) [1] and their variants such as DeiT [2] has introduced new challenges in
interpreting self-attention-based decisions in image classification. Conventional techniques like Grad-CAM [3] and
CAM [4], originally designed for convolutional architectures, are often ill-suited for transformers due to the absence of
spatially-localized convolutional filters. Recent works have attempted to adapt these by aggregating attention maps [5]
or propagating relevance using Layer-wise Relevance Propagation (LRP) [6]. However, most of these approaches are
either tailored to specific transformer architectures or lack consistent theoretical grounding across layers. Our work
addresses these limitations by introducing a principled LRP-based visual attribution method for both ViT and DeiT,
producing class-discriminative heatmaps that localize predictive evidence with high fidelity.

2.2 Textual Interpretability in BERT and Beyond

Interpretability for language models has primarily focused on identifying influential tokens via gradient-based
saliency [7], attention weights [8], and perturbation-based techniques like LIME [9] or SHAP [10]. While ef-
fective to some extent, these methods often lack robustness or rely on heuristics. Moreover, attention maps do not
always correlate with feature importance [11], raising questions about their validity as explanations. Our framework
overcomes this by implementing a customized LRP scheme for BERT-based models, which generates fine-grained
token-level attributions grounded in the modelś internal relevance flow. This allows transparent analysis of semantic
cues driving classification.
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3 Methodology

3.1 Proposed System Diagram

TransExplain Engine

[A] Visual Input Pipeline [B] Textual Input Pipeline

Input Processing
• Raw Image (H×W×3 RGB)
• Data Format: Float32 Tensor

Vision Preprocessing Module
• Resize, CenterCrop
• Normalization (ImageNet Stats)
• Patch Embedding (ViT/DeiT)

Vision Transformer Encoder
• Multi-Head Self-Attention
• Feed-Forward Networks w/ GELU
• CLS Token for Classification

LRP Attribution Module (ViT/DeiT)
• Custom Relevance Rules (ε, γ)
• Layer-wise Backpropagation
• Class-Conditioned Attribution

Heatmap Generator (Visual)
• Gradient-weighted Patch Scores
• Upsampling & Interpolation
• Overlay with OpenCV/PIL

Input Processing
• Raw Text (UTF-8 Sequence)
• Data Format: Tokenized Sequence

Text Preprocessing Module
• Tokenization (WordPiece/BPE)
• Embedding Lookup
• Positional Encoding Addition

Transformer-based Text Encoder
• Multi-Head Self-Attention
• Feed-Forward Networks
• CLS Token Classification Head

LRP Attribution Module (BERT)
• Token-level Relevance Propagation
• Rule-based Gradient Backflow
• Class-conditioned Attribution

Token Attribution Mapper
• Fine-grained Token Scores
• Top-k Class Tokens Highlight
• JSON/HTML Visualization Output

Visualization, Logging & Monitoring
• Save Explanations (PNG, JSON, NPY,
TXT)
• Integration with Tensor-
BoardX/MLFlow
• Interactive Visual Overlays

Evaluation & Benchmarking
• Quantitative Metrics: Localization
Error, Faithfulness
• Dataset Benchmarks: ImageNet,
GLUE, SST
• User Study Integration (Human Atten-
tion Correlation)

Figure 3: System architecture of TransExplain: An explainability engine for transformer-based multimodal models with Layer-
wise Relevance Propagation (LRP) applied to both vision (ViT/DeiT) and language (BERT) inputs, culminating in a
unified visualization and evaluation module.

3.2 Workflow

3.2.1 Input Processing

The TransExplain Engine begins by accepting raw inputs from two modalities — visual data (image) and textual
data (natural language). These inputs serve as the foundation for the downstream explainability pipeline.
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3.2.1.1 Visual Input:

The raw image is represented as a 3-dimensional tensor with dimensions H×W × 3, where H and W denote the
image’s height and width, and 3 represents the RGB color channels. The pixel values are cast to float32 for
numerical compatibility:

Iraw ∈ RH×W×3, Ifloat = cast(Iraw, float32)

3.2.1.2 Textual Input:

The raw text is received as a UTF-8 encoded character sequence. It is first normalized and cleaned before being
passed to a tokenizer, Byte-Pair Encoding (BPE). The result is a sequence of integer token IDs:

Traw = “I hate that I love you.”

Ttok = Tokenizer(Traw) = [CLS, 1023, 4781, . . . , SEP]
This ensures that the input is transformed into a discrete, numerical format suitable for embedding and positional
encoding in the later transformer layers.

This block guarantees a consistent and structured representation of input across both modalities, setting the stage for
modality-specific preprocessing in the subsequent modules.

3.2.2 Preprocessing Modules

Once the raw inputs are structured, they are passed through modality-specific preprocessing pipelines to ensure
compatibility with transformer encoders. This block performs crucial operations such as normalization, embedding,
and positional encoding.

3.2.2.1 Vision Preprocessing Module:

• Resizing and Cropping: The input image Ifloat is resized to a fixed resolution, followed by a center crop:

Iresized = CenterCrop(Resize(Ifloat), H
′,W ′)

• Normalization: We normalize the pixel values using ImageNet statistics to standardize input across datasets:

Inorm =
Iresized − µ

σ
, µ, σ ∈ R3

• Patch Embedding: The normalized image is divided into fixed-size non-overlapping patches and flattened.
Each patch is projected via a learnable linear embedding layer:

Xpatch ∈ RN×D, N =
H ′ ·W ′

P 2
, where P is patch size

3.2.2.2 Text Preprocessing Module:

• Token Embedding: The sequence of token IDs Ttok is mapped to dense vectors via an embedding lookup
table:

Xtok = EmbeddingMatrix[Ttok] ∈ RL×D

• Positional Encoding: Since transformers lack inherent order-awareness, positional encodings P ∈ RL×D

are added to token embeddings:
Xtext = Xtok +P

where L is the sequence length and D is the embedding dimension.

This preprocessing ensures that both visual and textual data are transformed into a shared latent space, ready for
contextual learning via transformer encoders.
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3.2.3 Transformer Encoders

The preprocessed inputs are passed into modality-specific transformer encoders. These encoders model rich intra-
modal dependencies through stacked layers of Multi-Head Self-Attention and Feed-Forward Networks (FFNs).
Both encoders utilize a special [CLS] token whose final representation is used for classification and attribution.

3.2.3.1 Vision Transformer Encoder (ViT/DeiT):

• The image patch embeddings Xpatch ∈ RN×D are prepended with a learnable [CLS] token:
Xvit = [x[CLS];Xpatch]

• The encoder applies L stacked layers of attention and FFNs:
H(l) = MSA(X(l−1)) +X(l−1), X(l) = FFN(H(l)) +H(l)

where MSA = Multi-Head Self-Attention and FFN = Feed-Forward Network with GELU activation:

GELU(x) = 0.5x

(
1 + tanh

[√
2

π

(
x+ 0.044715x3

)])
• The final [CLS] token embedding is used for classification and explanation.

3.2.3.2 Textual Transformer Encoder (BERT):

• Each layer applies contextualization through multi-head attention. For each attention head, the input X ∈
RL×D is linearly projected into:

Q = XWQ, K = XWK , V = XWV

where:
– Q (Query): Encodes what each token wants to attend to.
– K (Key): Encodes the content of each token that might be attended to.
– V (Value): Contains the actual information to be aggregated based on the attention weights.

• The self-attention scores are computed as:

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V

where:
– dk is the dimensionality of keys and queries, used for scaling.

This formula computes similarity between queries and keys, producing a weight distribution over values.
• The final embedding of the [CLS] token represents the semantic summary of the text, conditioned on the task.

This module outputs powerful, context-rich representations for both image and text, which are used in the next stage to
compute token-level or patch-level attributions using Layer-wise Relevance Propagation (LRP).

3.2.4 LRP Attribution Module

The Layer-wise Relevance Propagation (LRP) module is the core explainability engine of our system, designed to
produce class-conditioned, faithful, and human-aligned attributions over both textual and visual inputs.

3.2.4.1 Theoretical Basis: Deep Taylor Decomposition

LRP is rooted in the theory of Deep Taylor Decomposition, where the prediction score fc(x) is approximated as
a first-order Taylor expansion. The objective is to redistribute this score layer-by-layer back to the input, ensuring
conservation: ∑

i

Ri = fc(x)

This makes LRP distinct from naive gradient methods which may not preserve this conservation property.
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3.2.4.2 LRP for Vision Transformers (ViT/DeiT)

• Initialization:
R(L) = fc(x) · 1[CLS]

• Propagation Rule: Relevance is propagated backward through the layers using either the γ-rule or ε-rule:

Ri =
∑
j

zij + γz+ij∑
k zkj + γ

∑
k z

+
kj + ε · sign(

∑
k zkj)

Rj

where:
– zij = xiwij is the contribution of neuron i to j

– γ > 0 emphasizes positive contributions
– ε > 0 stabilizes small denominators

• Output:
Heatmappatch = reshape(Rpatches)

is used to form visual overlays on the input image.
• Example:

Figure 4: Class-conditioned visual explanations using DeiT and LRP.

3.2.4.3 LRP for Text Transformers (BERT)

• Initialization:
R(L) = fc(x) · 1[CLS]

• Propagation: Relevance flows backward through self-attention and feedforward blocks:

Rtext
i =

∑
j

zij∑
k zkj + ε

Rj , zij = xiwij
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• Token Attribution Output:
Scoretokeni = Ri

Tokens with higher scores are highlighted in the textual interface.
• Example:

Figure 5: Token-level class-conditioned explanations on textual inputs. Each row shows a different sentence, with words
color-coded by sentiment class: negative and positive. The intensity of each color reflects the importance (relevance score) assigned
by the model to that token, as computed using Layer-wise Relevance Propagation (LRP). These attributions illustrate how the
model distributes attention across words when forming class-specific predictions, enhancing transparency and interpretability in text
classification.
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3.2.5 Comparative Advantages of LRP

Table 1: Comparison of popular explainability methods based on key interpretability criteria. Class-conditioning
indicates if the explanation adapts based on the target class. Saturation-resilience reflects robustness against gradient
saturation. Faithfulness measures how accurately the explanation reflects the model’s true decision process.

Method Class-Cond. No Saturation Faithful Output

Gradient ∇f × × Low N/A

Grad-CAM ✓ × Medium Heatmap

LRP ✓ ✓ High Heatmap / Tokens

3.2.6 Summary of LRP Benefits

• Class-Conditioned Attribution: Only highlights what is relevant for the predicted class.
• Robust to Saturation: Works even when gradients vanish or explode.
• Faithful Explanation: Relevance decomposition obeys conservation principles.
• Cross-Modal Consistency: Same LRP logic works for both images and text.

3.3 Visual and Textual Explanation Mapping

After computing relevance scores using the Layer-wise Relevance Propagation (LRP) module, the next step is to
generate interpretable outputs for both modalities:

3.3.1 Visual: Heatmap Generator

The Heatmap Generator converts relevance values across image patches into class-specific visual explanations:

• Each patch Pi receives a relevance score Ri propagated from the ViT/DeiT model.
• These patch-level relevance scores are reshaped into a 2D spatial layout:

Rpatch ∈ Rh×w

where h,w represent the number of patches along the height and width of the image.
• We perform upsampling using bilinear interpolation to match the original image resolution:

Rimage = Upsample(Rpatch)

• The resulting heatmap is then overlayed on the original input using OpenCV:
Overlayed Image = α · Image + (1− α) · Colormap(Rimage)

with blending coefficient α ∈ [0, 1].

3.3.2 Token Attribution Mapper

The Token Attribution Mapper highlights the most influential tokens for the target class based on LRP relevance
scores:

• Each token ti from the input sequence receives a relevance score Ri, forming:
Rtext = [R1, R2, ..., Rn], Rtext ∈ Rn

• Tokens are visualized by:
– Coloring: Green for positive contributions and red for negative.
– Opacity: Proportional to |Ri| to show strength.

• Output format is flexible:
– HTML-based visualizations (interactive)
– JSON outputs for integration with external dashboards

9
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4 Result and it’s interpretation

4.1 Training Strategy

To develop an interpretable and robust model for both visual and textual modalities, we adopt a carefully designed
staged fine-tuning strategy. We begin by initializing the architecture with pretrained transformer backbones—ViT
and DeiT for images and BERT for text. In the initial phase, the entire transformer backbone is frozen, and only the
task-specific classification head is trained. This allows the model to quickly specialize in the downstream task without
disturbing the rich, pretrained representations.

After a few epochs, we progressively unfreeze the higher transformer layers in stages, a process known as layer-wise
unfreezing. Specifically, we unfreeze the top 2–3 layers at a time after fixed intervals (e.g., every 5 epochs). This
gradual unfreezing is accompanied by differential learning rates, where newly unfrozen layers are trained with a
lower learning rate to avoid abrupt weight updates. This technique helps in mitigating catastrophic forgetting and
ensures stable convergence.

For models incorporating a custom explainability module (XAI), we support both joint training and separate
training regimes. In the joint setup, the base model and XAI module are trained simultaneously with a composite
loss that combines task accuracy and explanation fidelity. This is achieved by balancing the cross-entropy loss for
classification and a mean squared error loss for attribution alignment using a tunable weight parameter (λ).

The training process is optimized using the AdamW optimizer, a cosine learning rate scheduler with warmup,
gradient clipping, and mixed-precision training for efficiency. The full configuration is summarized in Table 2.

Validation accuracy curves and training loss curves for both the training types are presented in Figure 10.

Table 2: Hyperparameter Configuration for Joint vs. Separate Training across Modalities

Hyperparameter Joint (Text) Joint (Vision) Separate (Text) Separate (Vision)

Optimizer AdamW AdamW AdamW AdamW
Base Learning Rate 1e-4 1e-4 2e-5 2e-5
XAI Module LR 1e-4 1e-4 1e-4 1e-4
Scheduler Cosine w/ Warmup Cosine w/ Warmup Cosine w/ Warmup Cosine w/ Warmup
Weight Decay 0.01 0.01 0.01 0.01
Batch Size 32 32 16 16
Epochs 25 30 10 (base), 15 (XAI) 10 (base), 20 (XAI)
Loss Function CrossEntropy + XAI Loss CrossEntropy + XAI Loss CE + MSE/Custom CE + MSE/Custom
Explanation Loss Weight (λ) 0.3 0.2 N/A N/A
Dropout Rate 0.1 0.1 0.1 0.1
Warmup Ratio 0.1 0.1 0.1 0.1
Max Gradient Norm 1.0 1.0 1.0 1.0
Unfreezing Strategy Gradual Gradual Frozen base Frozen base
XAI Module Init Random Random Random Random
Early Stopping Patience 5 5 5 5
Validation Frequency 1 epoch 1 epoch 1 epoch 1 epoch

4.2 Quantitative Metrics and its Interpretation

We quantitatively assess the effectiveness of our explainability modules using four key metrics across both textual
(BERT-based) and visual (ViT/DeiT-based) modalities. The results for both separate and joint training strategies are
summarized in Tables 3, 4, and 5.

4.2.1 Text Modality (BERT)

As shown in Table 3, the jointly trained model achieves a fidelity score of 0.87, significantly higher than the 0.81 score
of the separately trained counterpart. This suggests that the explanation module trained jointly with the base model
better captures the features used for the final prediction. The comprehensiveness improves from 0.75 to 0.79, meaning
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that removing the most important tokens has a greater impact on the model’s confidence — validating the relevance of
the highlighted explanations.

Importantly, the sufficiency drops from 0.42 to 0.35, indicating that just the highlighted tokens alone are more sufficient
for accurate prediction in the joint setup. Furthermore, sparsity increases from 0.61 to 0.66, reflecting more concise
and focused explanations.

Table 3: Quantitative Evaluation Metrics for Textual Explanations (BERT-based)
Training Strategy Fidelity ↑ Comprehensiveness ↑ Sufficiency ↓ Sparsity ↑

Separate Training 0.81 0.75 0.42 0.61
Joint Training 0.87 0.79 0.35 0.66

4.2.2 Vision Modality (ViT)

Table 4 presents metrics for the ViT model. Joint training improves fidelity from 0.78 to 0.85, indicating better
alignment between visual attributions and model decisions. Comprehensiveness increases from 0.72 to 0.79, showing
the highlighted regions are indeed crucial for prediction.

Sufficiency decreases from 0.46 to 0.38, meaning fewer visual patches are needed for accurate prediction, and sparsity
rises from 0.60 to 0.65, reflecting more focused explanations.

Table 4: Quantitative Evaluation Metrics for ViT Visual Explanations
Training Strategy Fidelity ↑ Comprehensiveness ↑ Sufficiency ↓ Sparsity ↑

Separate Training 0.78 0.72 0.46 0.60
Joint Training 0.85 0.79 0.38 0.65

4.2.3 Vision Modality (DeiT)

Table 5 shows explainability metrics for the DeiT model. Joint training leads to fidelity improvement from 0.74 to
0.81 and comprehensiveness rise from 0.70 to 0.75, demonstrating enhanced explanation quality.

Similarly, sufficiency drops from 0.50 to 0.40 and sparsity improves from 0.56 to 0.59, further confirming the benefit
of joint optimization for concise and faithful explanations.

Table 5: Quantitative Evaluation Metrics for DeiT Visual Explanations
Training Strategy Fidelity ↑ Comprehensiveness ↑ Sufficiency ↓ Sparsity ↑

Separate Training 0.74 0.70 0.50 0.56
Joint Training 0.81 0.75 0.40 0.59

4.2.4 Overall Interpretation.

Across all three models, joint training consistently improves fidelity and comprehensiveness, indicating explanations
better capture the models’ true decision processes. The reduction in sufficiency values under joint training implies that
explanations alone are more informative for accurate predictions. Moreover, increased sparsity values reflect more
concise, focused explanations, improving interpretability.

Between the vision models, ViT demonstrates generally higher explainability metrics than DeiT, likely due to architec-
tural and data-efficiency differences. These results highlight the advantage of end-to-end training for producing both
effective and interpretable explanations in multimodal transformer models.
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4.3 Sample Examples

4.3.1 Sample Outputs for Vision and Textual Inputs

Figure 6: Sample outputs on visual inputs on a variety of classes.
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Figure 7: Sample outputs on visual inputs on a variety of classes.
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Figure 8: Sample outputs on texts with negative connotations.
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Figure 9: Sample outputs on texts with positive connotations.
15
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4.4 Training Loss and Validation accuracy curves

Figure 10: Training Loss and Validation accuracy curves for both Joint and Separate training strategies.
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