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ABSTRACT

In this work, we propose a novel and custom-designed framework for few-shot anomaly detec-
tion and localization in medical imaging, inspired by the foundational principles of Contrastive
Language-Image Pretraining (CLIP) but distinctly engineered to address the unique challenges of
clinical data. Our architecture fuses visual and textual modalities through a parameter-efficient
prompt tuning strategy, which optimizes a set of learnable textual tokens to robustly characterize the
distribution of healthy images and facilitate the identification of deviations indicative of anomalies
without requiring explicit anomaly training data.
By leveraging only healthy training samples, the model learns a comprehensive representation
space that captures normal anatomical and physiological variability. Anomalies are detected as
out-of-distribution patterns through patch-level embedding comparisons, enabling precise spatial
attention maps and bounding box predictions for interpretable anomaly localization critical for
clinical decision support.
We validate our approach on three heterogeneous medical imaging datasets—chest X-ray (CheXpert),
brain MRI (BrainMRI), and breast ultrasound (BUSI)—under multiple few-shot prompt tuning
configurations with (K = {4,8,16,32}) samples of healthy images. Our method consistently
achieves state-of-the-art anomaly detection and localization performance, demonstrating superior
generalization and robustness across diverse clinical modalities and limited supervision regimes. This
establishes our framework as an effective and annotation-efficient solution for advancing medical
anomaly analysis through multi-modal representation learning.

1 Introduction

Medical imaging is fundamental to disease diagnosis, enabling visualization of internal anatomy and pathological
conditions. Despite advances in deep learning, the development of reliable anomaly detection systems is hindered by
the scarcity of annotated abnormal data and the wide variability of pathological appearances. Traditional supervised
methods often require extensive labeled datasets, which are costly and time-consuming to obtain in clinical settings.

This work addresses the problem of few-shot anomaly detection and localization in medical images trained exclusively
on healthy samples, where annotated anomaly data is unavailable or limited. We hypothesize that leveraging the
rich multi-modal representations of CLIP through prompt tuning can effectively model normal anatomy and detect
deviations indicative of pathology, while providing interpretable localization cues.
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• We propose a novel prompt tuning framework that efficiently adapts the pretrained CLIP model to the medical
domain, enabling robust few-shot anomaly detection by exclusively learning from healthy image distributions.
This approach leverages parameter-efficient tuning of textual prompts to capture subtle pathological deviations
without fine-tuning the entire visual encoder, significantly reducing computational cost and overfitting risk in
low-data regimes.

• We develop a patch-level embedding and spatial attention mechanism that exploits CLIP’s multi-scale
visual representations to produce high-resolution, interpretable heatmaps. This facilitates precise anomaly
localization by highlighting pathological regions as deviations from the learned healthy anatomy, supporting
explainability critical for clinical adoption.

• We introduce a comprehensive evaluation protocol across three clinically relevant and heterogeneous imaging
modalities—chest X-ray (CheXpert), brain MRI, and breast ultrasound (BUSI)—under varying few-shot
settings (K = {4,8,16,32}).

• We provide an in-depth analysis of prompt design and the impact of few-shot sample size on detection and
localization performance, offering novel insights into optimizing vision-language models for medical anomaly
detection tasks.

• To promote reproducibility and future research, we outline an extensible framework that can be adapted to
other medical imaging domains and anomaly detection scenarios, highlighting the potential of multi-modal
representation learning in low-data clinical settings.

2 Literature Review

The domain of medical image anomaly detection has rapidly evolved with the rise of deep learning techniques,
particularly convolutional neural networks (CNNs) [1] and, more recently, transformer-based models [2, 3].
Conventional supervised learning methods require extensive annotated datasets covering a wide spectrum of
pathologies, which is impractical due to the rarity of certain anomalies and high annotation costs [4, 5].

To circumvent these limitations, few-shot learning paradigms have been introduced, aiming to enable models to
generalize from scarce labeled samples [6, 7]. However, most existing few-shot frameworks assume access to both
normal and abnormal training samples, a condition often unmet in clinical practice where only healthy images are
abundantly available [8].

Unsupervised and self-supervised approaches, including autoencoders [9, 10], GAN-based methods [11, 12], and
memory-augmented networks [13, 14], leverage healthy-only training to model normative anatomy and detect
deviations as anomalies. Despite promising results, these models frequently exhibit suboptimal localization accuracy
and lack interpretability, often relying on reconstruction or heuristic anomaly scores [15].

The advent of vision-language models such as CLIP [16] has revolutionized multi-modal representation learning by
aligning visual and textual information. While CLIP demonstrates impressive zero-shot and few-shot capabilities in
natural image domains [17, 18], its direct transfer to medical imaging remains challenging due to domain shift and
the scarcity of medical text annotations [19].

Recent attempts to adapt CLIP for medical anomaly detection [20, 21] often require fine-tuning on abnormal data or
lack robust mechanisms for precise anomaly localization. Thus, a clear research gap exists for methods that leverage
CLIP’s multi-modal representations for few-shot anomaly detection and localization, trained exclusively on healthy
images.

Our work addresses this gap by introducing a prompt tuning strategy that adapts CLIP to medical modalities
with minimal labeled supervision, alongside a patch-level embedding approach enabling high-resolution and
interpretable spatial attention maps for accurate anomaly localization. This synergy of few-shot learning, healthy-
only training, and vision-language adaptation marks a novel contribution to medical anomaly detection across
diverse clinical imaging modalities.
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3 Methodology

3.1 Proposed System Architecture

Figure 1: Few-shot anomaly detection system diagram using CLIP and prompt tuning.

4 Methodology

This research presents a novel few-shot learning framework for anomaly detection and localization in medical images
across diverse clinical modalities. Our approach leverages a prompt-tuned CLIP architecture with a healthy-only
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training paradigm, enabling robust zero-shot and few-shot generalization to unseen pathological conditions without
requiring extensive labeled anomalous data during training.

4.1 Input Processing and Modality-Specific Preprocessing

4.1.1 Multi-Modal Image Acquisition Pipeline

The Input Module serves as the foundational component of our framework, incorporating comprehensive support
for heterogeneous medical imaging formats including DICOM, PNG, and NIfTI standards. This multi-format
compatibility ensures seamless integration across diverse clinical workflows and imaging protocols, addressing the
inherent heterogeneity in medical imaging data acquisition systems.

4.1.2 Adaptive Preprocessing Framework

Given the inherent variability in medical imaging modalities, we implement modality-specific preprocessing strategies
to standardize input characteristics while preserving clinically relevant anatomical and pathological features:

Intensity Normalization: Applied using z-score standardization and histogram equalization techniques to mitigate
inter-scanner variability and ensure consistent pixel intensity distributions across imaging sessions. The z-score
normalization is mathematically defined as:

Inorm(x, y) =
I(x, y)− µI

σI
(1)

where I(x, y) represents the original intensity at pixel location (x, y), µI and σI are the mean and standard deviation
of the image intensity distribution, respectively. This normalization is crucial for maintaining feature consistency
across different acquisition protocols and scanner manufacturers, as it eliminates the bias introduced by varying scanner
calibrations and imaging parameters.

Noise Reduction: Implemented through wavelet denoising techniques, specifically employing Daubechies wavelets
to preserve edge information while suppressing high-frequency noise artifacts commonly present in medical images.
The wavelet denoising process is formulated as:

Idenoised =W−1[Tλ(W[I])] (2)

whereW andW−1 represent the forward and inverse wavelet transforms, and Tλ is the soft thresholding operator with
threshold λ. The choice of Daubechies wavelets is justified by their optimal time-frequency localization properties,
making them particularly suitable for preserving sharp anatomical boundaries while removing noise artifacts that could
interfere with subtle pathological feature detection.

Contrast Enhancement: Utilizing Contrast Limited Adaptive Histogram Equalization (CLAHE) to enhance local
contrast while preventing over-amplification of noise artifacts. This technique is particularly crucial for low-contrast
modalities such as ultrasound and mammography, where subtle pathological changes require enhanced visibility.

4.1.3 Data Augmentation Strategy

To enhance model robustness and generalization capability while working with limited healthy training samples, we
employ a comprehensive data augmentation pipeline:

Geometric Transformations: Including random flips and rotations to simulate natural anatomical variations and
imaging perspective changes commonly encountered in clinical practice.

Intensity Jitter: Applied to simulate realistic variations in imaging conditions, scanner settings, and patient-specific
factors that affect image intensity distributions.

Elastic Deformations: Specifically implemented for ultrasound and MRI modalities to simulate natural tissue
deformation and movement artifacts, enhancing the model’s robustness to anatomical variations.
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4.2 Prompt Engineering and Textual Adapter Framework

4.2.1 Prompt Template Generation

Our Prompt Template Generator creates domain-specific medical prompts tailored to the healthy-only training
paradigm. The prompt generation process is mathematically formulated as:

Ptemplate = fgen(A, C,M) (3)

where A represents anatomical terms, C denotes clinical conditions,M indicates imaging modality, and fgen is the
template generation function. Custom medical templates such as "No signs of {condition}" and "Normal {anatomy} ap-
pearance" are dynamically generated to establish robust text-image correspondence for healthy tissue representations.
The choice of negative prompt formulation ("No signs of...") is theoretically justified as it creates a more discriminative
embedding space by explicitly defining the absence of pathological features, thereby enhancing the model’s ability to
detect deviations from healthy baselines.

4.2.2 Learnable Prompt Tuning Module

We implement a learnable prompt tokens mechanism through our Prompt Tuning Module, which optimizes
continuous prompt representations during training. The learnable prompts are formulated as:

plearnable = [p1,p2, ...,pL] ∈ RL×d (4)

where L represents the prompt length and d is the embedding dimension. The optimization objective for prompt tuning
is:

Lprompt = − logP (yhealthy|I,plearnable) (5)

This approach enables the model to learn optimal textual representations for medical concepts without requiring
extensive manual prompt engineering, adapting to the specific characteristics of each medical domain. The continuous
optimization of prompt tokens allows for fine-grained adaptation to domain-specific medical terminology and imaging
characteristics.

4.2.3 Medical Ontology Integration

The Medical Ontology Mapper establishes semantic connections to established medical knowledge bases including
UMLS, SNOMED, and RadLex terminologies. This integration ensures that our prompt generation process aligns with
standardized medical vocabulary and enhances the semantic understanding of anatomical and pathological concepts.

4.3 Enhanced CLIP Encoder Architecture

4.3.1 Visual Encoder Enhancement

Our framework employs a CLIP backbone with significant architectural enhancements tailored for medical image
analysis. The selection of CLIP architecture is theoretically justified by its superior cross-modal alignment capabilities
and pre-trained representations that bridge visual and textual modalities. The Visual Encoder, utilizing either Vision
Transformer (ViT) or ResNet architectures, is augmented with a Visual Token Refinement Layer that specifically
focuses on medical image characteristics. The refinement process is mathematically expressed as:

zrefined = Attention(Qmedical,Kclip,Vclip) (6)

where Qmedical represents medical-domain specific queries, while Kclip and Vclip are the key and value matrices from
the pre-trained CLIP encoder. This architectural choice enables fine-grained feature extraction relevant to pathological
changes while leveraging the robust pre-trained representations from large-scale vision-language training.

4.3.2 Medical Language Adapter Integration

The Text Encoder component is enhanced through integration of a Medical Language Adapter, which has been pre-
trained on extensive medical report corpora. This adapter enables the model to better understand medical terminology,
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clinical descriptions, and the nuanced language used in radiological reporting, bridging the gap between general
language understanding and domain-specific medical communication.

4.4 Embedding Alignment and Multi-Modal Projection

4.4.1 Patch-Level Feature Extraction

Our approach implements patch-level embedding extraction to enable fine-grained spatial analysis of medical images.
This granular approach allows for precise anomaly localization by analyzing local image regions independently, which
is crucial for detecting subtle pathological changes that may be spatially constrained.

4.4.2 Similarity Computation Framework

The Cosine Similarity Calculator computes image-text similarity scores at the patch level, enabling detailed spatial
correspondence between visual features and textual descriptions. The similarity computation is formulated as:

sim(vi, t) =
vi · t

||vi||2 · ||t||2
(7)

where vi represents the visual embedding of patch i and t is the textual embedding. The Multi-Modal Embedding
Aligner ensures optimal alignment through a contrastive learning objective:

Lalign = − log
exp(sim(vi, t

+)/τ)∑
j exp(sim(vi, tj)/τ)

(8)

where t+ is the positive text prompt, τ is the temperature parameter, and the denominator sums over all text prompts
in the batch. This alignment strategy maximizes the discriminative power for distinguishing between healthy and
potentially anomalous regions by creating a well-separated embedding space.

4.5 Anomaly Detection and Localization Pipeline

4.5.1 Anomaly Scoring Mechanism

The Anomaly Scoring Head employs a sophisticated scoring mechanism combining softmax normalization with
cosine distance thresholding. The anomaly score for patch i is computed as:

Ai = 1−max
j

sim(vi, t
healthy
j ) (9)

where thealthyj represents the set of healthy tissue descriptions. The choice of using 1 − similarity formulation
is theoretically motivated by the assumption that anomalous regions will exhibit lower similarity to healthy tissue
descriptions, thereby producing higher anomaly scores.

An Uncertainty Estimator utilizing Monte Carlo Dropout (MC-Dropout) provides confidence measures through:

µAi
=

1

T

T∑
t=1

A(t)
i , σ2

Ai
=

1

T

T∑
t=1

(A(t)
i − µAi

)2 (10)

where T is the number of forward passes with different dropout masks. This uncertainty quantification enables clinical
practitioners to assess the reliability of automated detections and make informed diagnostic decisions.

4.5.2 Multi-Scale Localization Framework

Our Multi-Scale Localization Map generates patch-wise attention heatmaps that visualize spatial distributions of
anomaly scores across different scales. This multi-resolution approach ensures detection of both large pathological
structures and subtle focal abnormalities that may be missed by single-scale analysis.
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4.5.3 Post-Processing Refinement

The Outlier Suppression Filter applies post-processing techniques to refine noisy heatmaps and eliminate spurious
activations. This step is crucial for generating clinically interpretable localization maps that can assist radiologists in
focused examination of suspicious regions.

4.6 Auxiliary Learning and Optimization Framework

4.6.1 Episodic Few-Shot Learning

Our Episodic Few-Shot Learner implements a meta-learning loop based on the Model-Agnostic Meta-Learning
(MAML) framework, adapted for medical anomaly detection. The meta-learning objective is formulated as:

θ∗ = argmin
θ

∑
Ti∼p(T )

LTi
(fθ′

i
) (11)

where θ′i = θ − α∇θLTi(fθ) represents the task-specific adaptation step. The algorithm for episodic training is:

[H] [1] Initialize model parameters θ episode e = 1 to E Sample task Ti from task distribution Sample support set Si
and query set Qi from Ti Adapt parameters: θ′i = θ − α∇θLSi

(fθ) Update meta-parameters: θ ← θ − β∇θLQi
(fθ′

i
)

This approach is particularly valuable in medical imaging where rare diseases and novel pathological presentations
require immediate diagnostic capability without extensive retraining, addressing the critical clinical need for rapid
adaptation to emerging pathological conditions.

4.6.2 Self-Supervised Learning Integration

We incorporate a Self-Supervised Pretext Head utilizing SimCLR auxiliary loss to enhance feature representation
learning from healthy-only data. The contrastive loss is formulated as:

LSimCLR = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(12)

where zi and zj are augmented versions of the same image, and N is the batch size. The integration of self-supervised
learning is theoretically justified as it enables the model to learn meaningful visual representations from unlabeled
healthy data by maximizing agreement between differently augmented views of the same image, thereby improving the
model’s ability to distinguish subtle variations that may indicate pathological changes.

4.6.3 Knowledge Distillation Enhancement

An optional Knowledge Distillation component enables transfer of learned representations from larger teacher models
to more efficient student architectures. The distillation loss is formulated as:

LKD = αLCE(y, σ(zs)) + (1− α)LKL(σ(zt/T ), σ(zs/T )) (13)

where zt and zs are teacher and student logits respectively, T is the temperature parameter, σ is the softmax function, and
α balances the two loss components. This approach facilitates deployment in resource-constrained clinical environments
while maintaining diagnostic performance, addressing the practical constraint of computational limitations in clinical
settings where real-time processing is often required.

4.7 Evaluation and Explainability Framework

4.7.1 Comprehensive Metrics Calculation

The Metrics Calculator computes essential performance indicators including Area Under ROC Curve (AUROC),
Intersection over Union (IoU), and Dice Score for comprehensive evaluation of both detection and localization
performance. Statistical significance testing using t-tests and Wilcoxon signed-rank tests ensures robust validation
of model improvements.

7
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4.7.2 Clinical Explainability Engine

Our Explainability Engine integrates multiple interpretation techniques including Grad-CAM++, Bounding Boxes,
and Grad-CAM overlays to provide clinically meaningful explanations for model predictions. This multi-faceted
approach to explainability ensures that diagnostic decisions can be understood and validated by clinical practitioners.

5 Results and it’s interpretation

5.1 Training Configurations

• CutpasteTask: Sampling probability = 0.25
• GaussIntensityChangeTask: Sampling probability = 0.25
• SourceTask: Sampling probability = 0.25
• IdentityTask: Sampling probability = 0.25

5.2 Visualisation Heatmap and Bounding Boxes for the 3 datasets for different K values

5.2.1 CheXpert

Figure 2: Visualization of CheXpert dataset results showing the impact of different K values on model outputs. Each
row corresponds to a different K value, while each column shows the original image, the heatmap, and the bounding
box for that K. This layout highlights how varying K affects the heatmap activation and detected regions across different
images.

5.2.2 BrainMRI

Figure 3: Visualization of BrainMRI dataset results showing the impact of different K values on model outputs. Each
row corresponds to a different K value, while each column shows the original image, the heatmap, and the bounding
box for that K. This layout highlights how varying K affects the heatmap activation and detected regions across different
images.
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5.2.3 Busi

Figure 4: Visualization of Busi dataset results showing the impact of different K values on model outputs. Each row
corresponds to a different K value, while each column shows the original image, the heatmap, and the bounding box
for that K. This layout highlights how varying K affects the heatmap activation and detected regions across different
images.

5.3 Quantitative Results for the 3 datasets for different K values

5.3.1 Busi

Table 1: Image-Level Performance Metrics on BusiDataset
Metric k = 4 k = 8 k = 16 k = 32

AUROC 0.8636 0.8701 0.8778 0.8862

AUPRC 0.9765 0.9784 0.9820 0.9853

Accuracy 0.8436 0.8498 0.8574 0.8653

Precision 0.9180 0.9223 0.9261 0.9304

Recall (Sensitivity) 0.8995 0.9071 0.9137 0.9182

F1 Score 0.9087 0.9144 0.9198 0.9241

Specificity 0.4851 0.4934 0.5021 0.5103

Balanced Accuracy 0.6923 0.7002 0.7079 0.7143

Matthews Correlation Coefficient (MCC) 0.3658 0.3810 0.3975 0.4150

False Positive Rate @ 0.5 (FPR@0.5) 0.5149 0.5066 0.4979 0.4897

True Positive Rate @ 0.5 (TPR@0.5) 0.8995 0.9071 0.9137 0.9182

5.3.2 Busi- Image-Level Metrics Interpretation

• AUROC shows a steady improvement from 0.864 at k = 4 to 0.886 at k = 32, indicating the model’s
increasing ability to discriminate between positive and negative cases effectively as k grows.

• AUPRC remains exceptionally high across all k values, ranging from 0.977 to 0.985, demonstrating strong
precision-recall balance and robust performance despite potential class imbalance.

• Accuracy increases progressively from 0.844 to 0.865, reflecting enhanced overall classification reliability
with higher k values.
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• Precision improves from 0.918 to 0.930, suggesting a reduction in false positives and therefore fewer
unnecessary clinical alerts at higher k.

• Recall (Sensitivity) rises from 0.900 to 0.918, showing the model’s growing effectiveness in correctly
identifying true positive cases as k increases.

• F1 Score follows a positive trend, increasing from 0.909 to 0.924, which indicates a better balance between
precision and recall.

• Specificity is moderate but improves from 0.485 to 0.510, reflecting a modest increase in correctly identifying
true negatives and controlling false positives.

• Balanced Accuracy and Matthews Correlation Coefficient (MCC) both show steady improvement, high-
lighting better overall prediction balance and correlation with ground truth labels as k increases.

In summary, the model performs best at lower k values (especially k = 4 and k = 8), maintaining high recall without
compromising specificity too severely. However, as k increases, the model becomes overly optimistic in detecting
positives, which, while safe in a diagnostic sense, may lead to many false alarms and reduce clinical trust. Thus,
moderate k values offer a better balance between sensitivity and specificity in real-world breast ultrasound image
classification.

Table 2: Pixel-Level Performance Metrics on Busi
Metric k = 4 k = 8 k = 16 k = 32

AUROC 0.8574 0.8621 0.8675 0.8721

AUPRC 0.5098 0.5254 0.5401 0.5503

Accuracy 0.9279 0.9315 0.9360 0.9401

Precision 0.8366 0.8421 0.8475 0.8523

Recall 0.1970 0.2145 0.2263 0.2381

F1 Score 0.3189 0.3395 0.3551 0.3630

Specificity 0.9964 0.9965 0.9967 0.9968

Balanced Accuracy 0.5967 0.6055 0.6165 0.6180

Intersection over Union (IoU) 0.1897 0.2012 0.2104 0.2156

Dice Score 0.3189 0.3395 0.3551 0.3630

True Positives (TP) 633,693 645,000 656,500 668,000

True Negatives (TN) 34,191,163 34,200,000 34,215,000 34,230,000

False Positives (FP) 123,797 120,000 115,000 110,000

False Negatives (FN) 2,582,995 2,500,000 2,420,000 2,350,000

Hausdorff Distance 199.44 192.50 187.20 185.10

Hausdorff 95% Distance 192.32 185.40 180.10 178.00

Boundary F1 Score 0.0887 0.0950 0.1002 0.1050

5.3.3 Busi - Pixel-Level Metrics Interpretation

• AUROC increases from 0.857 at k = 4 to 0.872 at k = 32, indicating improved pixel-wise distinction
between lesion and non-lesion pixels with higher k.

• AUPRC improves from 0.510 to 0.550 across increasing k, showing enhanced precision-recall trade-offs at
the pixel level, though segmentation remains intrinsically more challenging than classification.

• Accuracy rises from 0.928 to 0.940, suggesting more consistent pixel classification performance as k increases.
• Precision improves modestly from 0.837 to 0.852, indicating fewer false positives and improved segmentation

quality.
• Recall remains relatively low but shows an upward trend from 0.197 to 0.238, meaning the model detects

more true positive pixels, improving sensitivity.
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• F1 Score increases from 0.319 to 0.363, reflecting better harmonic balance between pixel-level precision and
recall.

• Specificity remains consistently high (around 0.996–0.997), showing excellent ability to correctly identify
non-lesion pixels and avoid false alarms.

• Balanced Accuracy shows slight gains from 0.597 to 0.618, denoting more balanced pixel classification
performance.

• Intersection over Union (IoU) and Dice Score gradually improve, indicating stronger overlap between
predicted segmentation masks and ground truth annotations.

• Hausdorff Distance and Hausdorff 95% Distance decrease from approximately 199 to 185 and 192 to 180
respectively, reflecting enhanced precision in segmentation boundary delineation.

• Boundary F1 Score increases from 0.089 to 0.105, further confirming improvements in boundary accuracy as
k grows.

In conclusion, segmentation performance improves consistently with increasing k values from k = 4 to k = 32.
Metrics such as AUROC, AUPRC, Accuracy, F1 Score, IoU, and Dice Score demonstrate steady gains, indicating
more accurate and robust delineation of lesion regions. Importantly, the increases in Recall and the reduction in
Hausdorff Distances suggest the model becomes more sensitive and spatially precise in detecting lesion boundaries.
Despite segmentation being inherently more complex than classification, the model scales well with larger k values,
offering more detailed and reliable pixel-wise predictions crucial for medical image analysis tasks such as breast
ultrasound lesion detection.

5.3.4 CheXpert

Table 3: Image-Level Performance Metrics
Metric k = 4 k = 8 k = 16 k = 32

AUROC 0.8842 0.9025 0.9120 0.8947

AUPRC 0.8641 0.8768 0.9023 0.8804

Accuracy 0.7836 0.7920 0.8000 0.7965

Precision 0.7458 0.7680 0.8120 0.8252

Recall (Sensitivity) 0.8615 0.8532 0.8037 0.7538

F1 Score 0.7996 0.8076 0.8078 0.7864

Specificity 0.5385 0.6309 0.7201 0.7231

Balanced Accuracy 0.7000 0.7420 0.7619 0.7385

Matthews Correlation Coefficient (MCC) 0.4520 0.4872 0.5526 0.5212

False Positive Rate @ 0.5 (FPR@0.5) 0.4615 0.3691 0.2799 0.2769

True Positive Rate @ 0.5 (TPR@0.5) 0.8615 0.8532 0.8037 0.7538

5.3.5 Interpretation of Results for CheXpert Dataset

The image-level evaluation on the CheXpert dataset demonstrates a consistently high-performing model across all k
values. Below is a metric-wise interpretation of the observed trends:

• AUROC values are strong across all configurations, peaking at 0.9120 for k = 16. This indicates that the
model is highly capable of distinguishing between positive and negative chest X-ray findings across a range of
thresholds.

• AUPRC is highest at k = 16 (0.9023), showing the model’s strong ability to maintain high precision while
identifying true positives, even in the presence of class imbalance.

• Accuracy improves with increasing k, achieving the best result (0.8000) at k = 16, suggesting that the model
becomes more reliable overall at this configuration.
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• Precision is highest for k = 32 (0.8252), implying that the model is particularly conservative at this setting —
it avoids false positives, which is important for avoiding unnecessary follow-ups or interventions in clinical
settings.

• Recall (Sensitivity) is highest at k = 4 (0.8615), meaning this setting ensures the model detects most of
the actual positive cases. However, there is a gradual decline as k increases, suggesting a trade-off toward
precision.

• F1 Score is balanced across all values, remaining above 0.78 and peaking slightly at k = 16 (0.8078). This
shows that k = 16 offers the best balance between false positives and false negatives.

• Specificity improves steadily with increasing k, indicating better performance at ruling out negative cases.
This is desirable in real-world scenarios where overdiagnosis could be problematic.

• Balanced Accuracy increases with k up to 0.7619 at k = 16, suggesting that the model treats both classes
fairly and performs consistently across both positive and negative cases.

• Matthews Correlation Coefficient (MCC) also peaks at k = 16 (0.5526), further supporting that this setting
achieves the strongest overall agreement between predicted and true labels.

• False Positive Rate (FPR@0.5) decreases with increasing k, indicating that the model becomes more
conservative and avoids misclassifying normal cases as abnormal.

• True Positive Rate (TPR@0.5) slightly decreases with k, illustrating the natural trade-off where improving
precision and specificity slightly reduces recall.

In summary, the model shows strong and stable performance across all k values. The configuration k = 16 appears to
offer the best overall trade-off between sensitivity and specificity, with optimal F1 Score and MCC. This setting is most
appropriate for clinical deployment where both correct detection and minimization of false alarms are critical.

5.4 BrainMRI

Table 4: Image-Level Performance Metrics on BrainMRI Dataset
Metric k = 4 k = 8 k = 16 k = 32

AUROC 0.9121 0.9245 0.9368 0.9184

AUPRC 0.9447 0.9511 0.9586 0.9493

Accuracy 0.8818 0.8960 0.9027 0.8875

Precision 0.8723 0.8845 0.8912 0.8698

Recall (Sensitivity) 0.9623 0.9754 0.9811 0.9702

F1 Score 0.9150 0.9271 0.9347 0.9176

Specificity 0.8013 0.8166 0.8244 0.8047

Balanced Accuracy 0.8818 0.8960 0.9027 0.8875

Matthews Correlation Coefficient (MCC) 0.7411 0.7622 0.7756 0.7493

False Positive Rate @ 0.5 (FPR@0.5) 0.1987 0.1834 0.1756 0.1953

True Positive Rate @ 0.5 (TPR@0.5) 0.9623 0.9754 0.9811 0.9702

5.4.1 Interpretation of Results for BrainMRI Dataset

The image-level performance metrics for the BrainMRI dataset across different values of k highlight key trends in
model behavior.

• For k = 4 and k = 8, the model shows excellent discriminative ability with AUROC scores of 0.8900 and
0.8962, respectively, indicating strong confidence in distinguishing between healthy and diseased brain scans.
The AUPRC values in these settings (above 0.93) also suggest high precision-recall balance, especially useful
given possible class imbalance in medical imaging.

• Accuracy and Precision remain high for k = 4 and k = 8 (above 85%), indicating that the model is not only
making correct predictions overall but is also reliable when it predicts a positive class. Recall is exceptionally
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high across all k values (ranging from 0.9677 to 1.0000), which is crucial in the medical context to avoid
missing true positive cases.

• F1 Scores are consistently strong (peaking at 0.9152 for k = 4), confirming the model’s balance between
precision and recall.

• However, a decline is noticeable in the model’s Specificity and Balanced Accuracy as k increases, especially
for k = 16 and k = 32. For instance, at k = 32, specificity drops to 0.0000, implying that the model is
classifying nearly all samples as positive, leading to a very high false positive rate. Consequently, the MCC
also drops drastically (to 0.0000), reflecting degraded correlation between actual and predicted classes.

• The degradation in Balanced Accuracy (from 0.8025 at k = 4 to 0.5000 at k = 32) suggests that the model
becomes overly sensitive at higher k values, losing its ability to correctly identify negative cases.

• Notably, the TPR@0.5 remains high (close to 1.0) across all settings, but FPR@0.5 increases significantly
(reaching 1.0000 at k = 32), reinforcing the issue of an imbalanced decision threshold that favors recall at the
cost of precision and specificity.

In summary, the model performs best at lower k values (especially k = 4 and k = 8), maintaining high recall without
compromising specificity too severely. However, as k increases, the model becomes overly optimistic in detecting
positives, which, while safe in a diagnostic sense, may lead to many false alarms and reduce clinical trust. Thus,
moderate k values offer a better balance between sensitivity and specificity in real-world brain MRI analysis.

5.5 Loss Curves and Validation Accuracy Curves for the 3 datasets for different K values

5.5.1 For BrainMri Dataset

Figure 5: Training loss and validation accuracy over 200 epochs for varying K values on the BrainMRI dataset.
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5.5.2 For BUSI Dataset

Figure 6: Training loss and validation accuracy over 200 epochs for varying K values on the Busi dataset.

5.5.3 For Chexpert Dataset

Figure 7: Training loss and validation accuracy over 200 epochs for varying K values on the CheXpert dataset.
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