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ABSTRACT

We introduce ARM-Net (Adaptive Radiance Modulation Network), a lightweight, self-supervised
framework for low-light image enhancement that requires no paired training data. At the heart of
ARM-Net is a recursive enhancement strategy called Recursive Intensity Modulation (RIM), where
the network predicts a spatially-adaptive radiance adjustment tensor that is iteratively applied to the
input image to progressively recover visibility and contrast. The network architecture is fully convolu-
tional and preserves spatial resolution through a series of Spatially-Invariant Enhancement Blocks
(SIEBs), enabling fine-grained illumination control without introducing artifacts. To guide training
in the absence of reference images, we design a set of Self-Consistent Photometric Regularizers,
which enforce exposure balance, edge-aware smoothness, color stability, and gradient compactness.
Experimental results demonstrate that ARM-Net produces visually compelling enhancements and
achieves strong quantitative performance on standard low-light datasets, all while maintaining
real-time efficiency.

1 Introduction

Low-light image enhancement is a critical task in computer vision and computational photography, with widespread
applications in areas such as night-time surveillance, autonomous driving, mobile imaging, and consumer pho-
tography. Images captured in poorly illuminated environments often suffer from severe degradation, including low
visibility, color distortion, high noise levels, and diminished structural detail. These issues not only reduce the
perceptual quality of images but also impair the performance of downstream tasks such as object detection and scene
understanding.

Traditional enhancement techniques, such as histogram equalization, gamma correction, and Retinex-based
methods, attempt to improve image brightness and contrast through hand-crafted assumptions about illumination.
However, these methods often lack adaptability to varying lighting conditions and may introduce undesirable artifacts
or distortions. Recently, deep learning-based methods have shown promise by learning complex enhancement
mappings from data. While effective, many of these approaches rely on supervised training with paired datasets of
low-light and well-lit images, which are costly to collect and may not generalize well to real-world conditions.

To overcome these limitations, we propose ARM-Net (Adaptive Radiance Modulation Network), a novel, lightweight,
and fully self-supervised deep learning framework for low-light image enhancement. Our method introduces a
recursive enhancement scheme, termed Recursive Intensity Modulation (RIM), in which the network predicts a
radiance adjustment tensor that is iteratively applied to the input image. This process allows for progressive and
spatially adaptive illumination refinement without requiring ground-truth supervision.

The architecture of ARM-Net is composed of a series of Spatially-Invariant Enhancement Blocks (SIEBs), which
preserve the full spatial resolution of the input and enable fine-grained control over local illumination. To guide
training in the absence of paired data, we introduce a set of Self-Consistent Photometric Regularizers, which impose
constraints on exposure balance, local smoothness, color consistency, and gradient compactness.
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Extensive experiments demonstrate that ARM-Net produces visually compelling enhancements and achieves
competitive quantitative performance across a wide range of low-light conditions. The proposed framework offers a
robust, efficient, and scalable solution for real-world low-light image enhancement.

Our Paper’s Contribution

• We propose ARM-Net, a novel, lightweight, and self-supervised framework for low-light image enhancement
that requires no paired training data.

• We introduce Recursive Intensity Modulation (RIM), a new enhancement strategy that applies learned
radiance adjustments iteratively to progressively refine illumination.

• We design a set of Self-Consistent Photometric Regularizers to supervise training without ground truth,
enforcing exposure balance, smoothness, color consistency, and gradient compactness.

• We demonstrate the effectiveness of our method through extensive experiments, showing that ARM-Net
produces high-quality results and strong quantitative performance under challenging lighting conditions.

2 Related Work

Low-light image enhancement has been extensively studied through a variety of approaches, ranging from traditional
image processing methods to modern data-driven techniques. Early methods such as histogram equalization and
Retinex-based decomposition [3] aim to enhance visibility by adjusting global or local brightness distributions.
However, these techniques are often limited by their inability to adapt to complex lighting variations, and they tend to
amplify noise or introduce artifacts in real-world scenes.

Supervised deep learning approaches have demonstrated significant improvements by learning mappings from
low-light to well-lit image pairs. For example, Deep Retinex-Net [5] performs illumination decomposition and
enhancement using end-to-end learning, while EnlightenGAN [2] employs adversarial training for unpaired
enhancement. Despite their effectiveness, these methods either require carefully aligned paired training data or
involve large, complex models with high computational demands.

To mitigate the need for paired supervision, recent works have explored unsupervised and zero-reference strate-
gies [4, 1]. These methods aim to enhance images using perceptual priors, exposure constraints, or curve-based
transformations without relying on ground-truth data. However, they often rely on handcrafted loss functions or
require a delicate balance between multiple objective terms, which can lead to unstable training or inconsistent
enhancement quality.

In contrast, we propose ARM-Net, a lightweight, self-supervised model that enhances low-light images through Re-
cursive Intensity Modulation (RIM). Our method employs a fully convolutional structure with Spatially-Invariant
Enhancement Blocks (SIEBs) and is guided by a principled set of Self-Consistent Photometric Regularizers,
achieving strong enhancement performance without requiring reference supervision.

Figure 1: Here are some illustrative samples of our model ARM-NET in action. For a more comprehensive view of its performance
and capabilities, please refer to Figure 24 and Figure 25.
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3 Methodology

3.1 System Diagram

Input: Low-Light RGB Image
Underexposed, Poor Contrast

Illumination-Invariant Feature Encoder
Convolutional + Residual Blocks

Lighting-Agnostic Spatial Features

Spatially-Invariant Enhancement Blocks (SIEBs)
SIEB-1: Local Adaptive Curve Estimation

SIEB-2: Global Context-Aware Contrast Reweighting
SIEB-3: Detail-Preserving Residual Fusion

Recursive Intensity Modulation (RIM)
Stage t: Predict Radiance Adjustment Tensor ∆R(t)

Update: I(t+1) = I(t) +∆R(t)

RIM Unroll: I(1) → I(2) → I(3)

Radiance Decoder
Enhanced Feature → RGB

Chromatic Normalization, Tone Fusion

Final Enhanced Image
High Visibility, Low Noise, Spatially Balanced

Recursive Pass t → t+ 1

Exposure Balance Loss
Global Brightness Stability

Color Consistency Loss
RGB Channel Invariance

Gradient Compactness Loss
Sharp yet Denoised Transitions

Edge-Aware Smoothness Loss
Texture-Preserving Denoising

ARM-Net Architecture: The model extracts illumination-invariant features via an encoder, enhances them using stacked Spatially-
Invariant Enhancement Blocks (SIEBs), and performs recursive visibility refinement using the Recursive Intensity Modulation (RIM)
unit. Final reconstruction is handled by a radiance decoder. Training is fully self-supervised using a set of photometric consistency
losses to enforce exposure, color, gradient, and edge smoothness constraints.

3.2 Workflow

The proposed ARM-Net (Adaptive Radiance Modulation Network) is a novel, end-to-end, self-supervised deep
learning framework designed to address the challenges of low-light image enhancement. This section details the
architectural components and training strategies that enable ARM-Net to enhance perceptual quality, suppress noise,
and recover visibility without requiring ground-truth supervision.

3.2.1 Overview of ARM-Net Architecture

As illustrated in Figure 2, ARM-Net is a fully-convolutional model that maintains the spatial resolution of the input
throughout the network. It consists of the following primary components:
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1. Illumination-Invariant Feature Encoder
2. Spatially-Invariant Enhancement Blocks (SIEBs)
3. Recursive Intensity Modulation (RIM)
4. Radiance Decoder
5. Self-Consistent Photometric Regularizers

This modular design supports progressive and interpretable enhancement, and its recursive structure facilitates multi-
stage refinement of radiance.

3.2.2 Illumination-Invariant Feature Encoder

The input to ARM-Net is a low-light RGB image suffering from issues such as underexposure, high noise, and color
distortion. The encoder is tasked with extracting features that are invariant to illumination changes, allowing the
network to disentangle content from lighting effects.

This is achieved using a stack of convolutional layers followed by residual connections, which ensure stability and
depth while preserving spatial locality. The encoder outputs a latent representation F ∈ RH×W×C , where H , W , and
C denote the height, width, and number of channels respectively.

Key Characteristics:

• Avoids aggressive downsampling to retain high-frequency details.
• Facilitates lighting-agnostic processing in downstream blocks.
• Acts as a domain-adaptive feature extractor suitable for real-world scenarios.

3.2.3 Spatially-Invariant Enhancement Blocks (SIEBs)

The encoded features are passed through a series of Spatially-Invariant Enhancement Blocks, each tailored to a
specific enhancement function. These blocks operate on full-resolution features to maintain fine detail throughout
processing.

• SIEB-1: Local Adaptive Curve Estimation Learns pixel-wise nonlinear transformation curves that adjust
intensity locally, inspired by exposure correction in traditional imaging pipelines.

• SIEB-2: Global Context-Aware Contrast Reweighting
Captures global dependencies using self-attention mechanisms or pyramid pooling to adaptively reweight
contrast across the image.

• SIEB-3: Detail-Preserving Residual Fusion
Fuses outputs from prior blocks using residual connections and skip pathways to preserve texture and suppress
over-smoothing.

Each SIEB is differentiable and optimized jointly with the rest of the model. Together, they provide coarse-to-fine
modulation of luminance and structure.

3.2.4 Recursive Intensity Modulation (RIM)

The RIM module is the core component of ARM-Net and introduces a recursive enhancement strategy. Rather
than producing a final output in a single pass, RIM applies a sequence of radiance adjustments ∆R(t) over multiple
iterations.

I(t+1) = I(t) +∆R(t), where ∆R(t) = R_θ(F (t)) (1)

Here, Rθ denotes a shared-weight radiance adjustment module parameterized by θ. This formulation:

• Supports progressive illumination refinement.
• Enhances training stability through implicit regularization.
• Enables interpretable intermediate outputs for visualization.

The recursive nature mimics human visual adaptation, allowing ARM-Net to fine-tune exposure in stages, especially in
severely underexposed conditions.
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3.2.5 Radiance Decoder

After recursive enhancement, the decoder converts the refined latent features back to RGB space. The decoder consists
of convolutional layers, batch normalization, and activation functions, designed to produce:

• Color-balanced outputs through learned chromatic normalization.
• Natural tone mappings that enhance realism.
• Noise-suppressed textures via fusion with SIEB outputs.

This decoder architecture enables end-to-end learning of both appearance and tone transformations while maintaining
real-time efficiency.

3.2.6 Self-Consistent Photometric Regularizers

In the absence of paired supervision, ARM-Net relies on a carefully designed loss function comprising multiple
self-supervised objectives:

• Exposure Balance Loss (Lexp): Encourages pixel intensities to converge toward a target brightness level.
• Color Consistency Loss (Lcolor): Penalizes inter-channel disparities to maintain color fidelity.
• Gradient Compactness Loss (Lgrad): Promotes edge-aware transitions, avoiding oversharpening.
• Edge-Aware Smoothness Loss (Lsmooth): Enforces regularization in homogeneous regions while preserving

edges.

The total training objective is defined as:

L ∗ total = λ_1L ∗ exp + λ_2L ∗ color + λ_3L ∗ grad + λ_4L_smooth (2)

where λi are scalar weights that control the contribution of each loss term. These are empirically tuned to balance
perceptual quality with structural fidelity.

3.2.7 Recursive Feedback and Optimization

To improve convergence and enforce consistency across iterations, the output of each RIM pass is recursively fed
back into the system. This loop mimics recurrent attention and enables the network to progressively adapt to scene
complexity and illumination variation.

Furthermore, all parameters are optimized using the Adam optimizer with a cosine-annealed learning rate schedule.
Batch normalization and dropout are employed to ensure generalization across diverse lighting scenarios.

3.2.8 Advantages of ARM-Net

ARM-Net delivers several compelling benefits:

• No requirement for paired data, enabling training on real-world low-light images.
• Modular recursive design improves interpretability and robustness.
• Full-resolution processing without spatial down sampling retains structural integrity.
• Scalable and lightweight enough for real-time deployment on edge devices.

Together, these design choices enable ARM-Net to serve as a reliable, efficient, and effective tool for unsupervised
low-light image enhancement in practical settings.
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4 Results and Discussion

4.1 Training Stratergy

The following table Table 1 outlines the key training configurations and hyperparameters used in the development and
optimization of ARM-Net.

Summary of Training Strategy and Hyperparameters for ARM-Net

Component Description
Optimizer Adam (β1 = 0.9, β2 = 0.999)

Learning Rate 2× 10−4 (linearly decayed after 80% training)

Epochs 250

Batch Size 16

Resolution 256× 256

Loss Functions Lexp (Exposure Balance), Lcolor (Color Consistency), Lgrad (Gradient
Compactness), Lsmooth (Edge-Aware Smoothness)

Loss Aggregation Weighted sum over recursion steps:
∑

t λiL(t)
i

Recursive Steps (T ) Curriculum strategy: Start from T = 1, gradually increase to T = 3–4

Regularization Dropout (p = 0.2), Batch Normalization

Gradient Handling Gradient Clipping (max norm 5)

Initialization Xavier (Glorot) initialization

Warm-Up Phase First 10 epochs trained without RIM recursion (to stabilize
encoder/decoder)

Augmentation Random exposure shifts, additive Gaussian noise, color jitter, random
flips, and crops

Datasets LOL Dataset (real), synthetic darkened images for pretraining

Validation Early stopping on LOL validation set using PSNR/SSIM moving average

Logging Metrics and image snapshots tracked with TensorBoard

Hardware 4× NVIDIA RTX GPUs, PyTorch backend

4.2 Results and its interpretation

4.2.1 Quantitative Metrics

Table 2: Quantitative Performance of ARM-Net on LOL Dataset

Metric ARM-Net (Ours)
PSNR ↑ 23.65 dB
SSIM ↑ 0.83
NIQE ↓ 2.94
LPIPS ↓ 0.198
UIQM ↑ 3.58

Interpretation: The reported metrics validate the effectiveness of ARM-Net in enhancing low-light images both
perceptually and structurally. A PSNR of 23.65 dB indicates strong denoising and detail restoration, while the
SSIM score of 0.83 confirms high structural similarity to the ground truth. The low NIQE score of 2.94 reflects
strong perceptual quality without requiring reference images. The LPIPS value of 0.198 demonstrates that perceptual
similarity is preserved even from a learned deep feature standpoint. Furthermore, the UIQM score of 3.58 suggests an
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overall improvement in image quality across contrast, sharpness, and color fidelity. Together, these values suggest
that ARM-Net produces visually appealing, well-reconstructed outputs that generalize effectively under real-world
low-light conditions.

4.2.2 Visualizations and Qualitative Analysis

To assess the practical effectiveness of ARM-Net, we present comprehensive visual analyses across a variety of
challenging cases. These visualizations not only demonstrate the model’s ability to enhance images under different
degradations but also serve as qualitative evidence supporting our quantitative results.

We consider three distinct input types from the LOL dataset:

• Case 1: Extremely dark scene with no ambient light.
• Case 2: Moderately low-light scene with partial visibility.
• Case 3: Noisy low-light scene.

4.2.2.1 Extremely dark scene with no ambient light

Figure 3: ARM-Net restores a severely underexposed image—originally appearing almost black—into a clear indoor scene with
visible furniture and structure.

Figure 4: Edge detection fails on the original image due to lack of contrast but successfully reveals structural boundaries after
enhancement with ARM-Net.

Figure 5: CDF plots for red, green, and blue channels show a shift from low-intensity clustering in the original to a broad dynamic
range after enhancement.
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Figure 6: Laplacian variance comparison indicates a rise in image sharpness from 13.66 in the original to a high variance of 957.19
after ARM-Net enhancement.

Figure 7: The intensity histogram evolves from a narrow low-range peak in the original to a broad and uniform distribution,
reflecting improved brightness and contrast.

Figure 8: The absolute difference map highlights spatial regions with major pixel-level changes, capturing the visual adjustments
performed by ARM-Net.
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Figure 9: RGB channel visualizations show that each color component—originally muted and lacking detail—is restored with
enhanced contrast and dynamic range, as confirmed by their full-spectrum histograms.

4.2.2.2 Moderately low-light scene with partial visibility

Figure 10: ARM-Net effectively restores a moderately dark scene with partial visibility, unveiling finer textures and scene details
that were only faintly visible in the original.
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Figure 11: Edge detection confirms the structural enhancement performed by ARM-Net, transforming weak contours in the original
image into sharp and well-defined edges.

Figure 12: CDF analysis of the red, green, and blue channels shows an expanded dynamic range after enhancement, resolving the
low-contrast distributions in the original input.

Figure 13: A noticeable increase in Laplacian variance from 60.13 to 3408.43 reflects the gain in image sharpness, as ARM-Net
transforms a partially visible input into a crisp and detailed output.

Figure 14: The intensity histogram reveals a shift from a limited brightness range to a more uniform spread, suggesting improved
illumination balance and contrast.
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Figure 15: The absolute difference map visualizes the enhancement impact of ARM-Net across the scene, with brighter regions
highlighting significant pixel-level adjustments and darker zones showing minimal change in well-preserved regions.

Figure 16: Channel-wise decomposition reveals that red, green, and blue components all gain enhanced contrast and structural
clarity after enhancement, as confirmed by the broadened intensity histograms reflecting better dynamic range across all channels.

4.2.2.3 Noisy low-light scene
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Figure 17: The original image is severely underexposed, with almost no visible content, while the ARM-Net enhanced result
significantly improves brightness and visibility, albeit with some amplified grain and noise.

Figure 18: Edge detection on the original image produces minimal output due to lack of structure and intensity, whereas the
enhanced image reveals recoverable edge features, despite many noise-induced artifacts also being introduced along with structure
recovery.

Figure 19: CDF analysis of the red, green, and blue channels shows an expanded dynamic range after enhancement, resolving the
low-contrast distributions in the original input.

Figure 20: The Laplacian variance in the original image is extremely low due to overall darkness, while the enhanced output
registers a higher sharpness score. The Laplacian variance increases from 822.722 to 134408.288 revealing structure and texture
alongside grain emergence from light boosting.
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Figure 21: The histogram of the original image is tightly clustered at low intensity values, reflecting the severely dark exposure.
After enhancement with ARM-Net, the histogram shows a well-distributed spread across the full 0–255 range, indicating improved
brightness, enhanced global contrast, and better tone coverage — though with slight high-frequency noise peaks in brighter regions.

Figure 22: The absolute difference map highlights strong intensity changes between the original dark input and the enhanced image,
particularly in background and midtone regions where details were previously lost — now revealed with added noise traces.
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Figure 23: The enhanced output demonstrates a significant improvement in contrast and visibility across all channels, with richer
textures and stronger channel separation, albeit with some amplified noise.
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4.2.3 Result’s Gallery

Figure 24: Visual Examples Illustrating the Enhancement Capability of ARM-Net.
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Figure 25: Visual Examples Illustrating the Enhancement Capability of ARM-Net.
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